论文标题
依靠最佳继电器选择
Secrecy Rate of the Cooperative RSMA-Aided UAV Downlink Relying on Optimal Relay Selection
论文作者
论文摘要
提出的合作利率分拆(CRS)方案从常规速率拆分(RS)演变,并依靠转电用户转发一部分RS消息。就保密性增强而言,已显示CRS的表现优于其两用户多个输入单输出(MISO)广播通道(BC)的非合作性对应物。鉴于6G的巨大连接要求,我们将现有的安全两用户CRS框架概括为多用户框架,其中必须选择最高安全用户作为继电器节点。本文解决了在无人机辅助下行网络中最大化最坏情况的保密率(WCSR)的问题,在该网络中,在存在外部窃听器(EVE)的情况下,多种无人机无人机基础站(UAV-BS)为一组用户提供服务。我们考虑了一个实际情况,其中仅在UAV-BS上提供EVE的不完美的频道状态信息。因此,我们设想了一种健壮且安全的资源分配算法,该算法通过共同优化安全的中继用户选择(SRU)和网络参数分配问题,从而最大化WCSR,包括RS发送预编码器,消息拆分变量,时间插槽分享和电源分配和电源分配。为了避免由于SRUS施加的离散变量而产生的非转换性,我们提出了一种两阶段算法,其中SRU和网络参数分配是在两个连续的阶段完成的。关于SRU,我们研究集中和分布式方案。另一方面,为了共同优化网络参数分配,我们求助于顺序参数凸近似(SPCA)算法。我们的数值结果表明,根据WCSR,所提出的解决方案明显优于广泛的网络负载的现有基准。
The Cooperative Rate-Splitting (CRS) scheme, proposed evolves from conventional Rate Splitting (RS) and relies on forwarding a portion of the RS message by the relaying users. In terms of secrecy enhancement, it has been shown that CRS outperforms its non-cooperative counterpart for a two-user Multiple Input Single Output (MISO) Broadcast Channel (BC). Given the massive connectivity requirement of 6G, we have generalized the existing secure two-user CRS framework to the multi-user framework, where the highest-security users must be selected as the relay nodes. This paper addresses the problem of maximizing the Worst-Case Secrecy Rate (WCSR) in a UAV-aided downlink network where a multi-antenna UAV Base-Station (UAV-BS) serves a group of users in the presence of an external eavesdropper (Eve). We consider a practical scenario in which only imperfect channel state information of Eve is available at the UAV-BS. Accordingly, we conceive a robust and secure resource allocation algorithm, which maximizes the WCSR by jointly optimizing both the Secure Relaying User Selection (SRUS) and the network parameter allocation problem, including the RS transmit precoders, message splitting variables, time slot sharing and power allocation. To circumvent the resultant non-convexity owing to the discrete variables imposed by SRUS, we propose a two-stage algorithm where the SRUS and network parameter allocation are accomplished in two consecutive stages. With regard to the SRUS, we study both centralized and distributed protocols. On the other hand, for jointly optimizing the network parameter allocation we resort to the Sequential Parametric Convex Approximation (SPCA) algorithm. Our numerical results show that the proposed solution significantly outperforms the existing benchmarks for a wide range of network loads in terms of the WCSR.