论文标题

短文预培训和扩展令牌分类以进行电子商务查询理解

Short Text Pre-training with Extended Token Classification for E-commerce Query Understanding

论文作者

Jiang, Haoming, Cao, Tianyu, Li, Zheng, Luo, Chen, Tang, Xianfeng, Yin, Qingyu, Zhang, Danqing, Goutam, Rahul, Yin, Bing

论文摘要

电子商务查询理解是通过从搜索查询中提取语义含义来推断客户购物意图的过程。自然语言处理中预训练的蒙版语言模型(MLM)的最新进展对于开发有效的查询理解模型极为有吸引力。具体而言,MLM通过在句子中恢复蒙版令牌来学习上下文文本嵌入。这样的预训练过程依赖于足够的上下文信息。但是,对于搜索查询,通常是简短的文本。在将掩码应用于简短的搜索查询时,大多数上下文信息都会丢失,并且可以更改搜索查询的意图。为了减轻有关MLM在搜索查询中预培训的上述问题,我们提出了一项新颖的预训练任务,专门针对短文本设计,称为扩展令牌分类(ETC)。我们的方法没有掩盖输入文本,而是通过通过生成器网络插入令牌来扩展输入,并训练歧视器以识别在扩展输入中插入哪些令牌。我们在电子商务商店进行实验,以证明ETC的有效性。

E-commerce query understanding is the process of inferring the shopping intent of customers by extracting semantic meaning from their search queries. The recent progress of pre-trained masked language models (MLM) in natural language processing is extremely attractive for developing effective query understanding models. Specifically, MLM learns contextual text embedding via recovering the masked tokens in the sentences. Such a pre-training process relies on the sufficient contextual information. It is, however, less effective for search queries, which are usually short text. When applying masking to short search queries, most contextual information is lost and the intent of the search queries may be changed. To mitigate the above issues for MLM pre-training on search queries, we propose a novel pre-training task specifically designed for short text, called Extended Token Classification (ETC). Instead of masking the input text, our approach extends the input by inserting tokens via a generator network, and trains a discriminator to identify which tokens are inserted in the extended input. We conduct experiments in an E-commerce store to demonstrate the effectiveness of ETC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源