论文标题
一位MIMO-OFDM检测的加速和深度期望最大化
Accelerated and Deep Expectation Maximization for One-Bit MIMO-OFDM Detection
论文作者
论文摘要
在本文中,我们研究了一次性MIMO-OFDM检测(OMOD)的期望最大化(EM)技术。 OMOD是由于最近对单位类似物到数字转换器的大规模MIMO的兴趣而引起的,是一个大规模的问题。 EM是一种迭代方法,可以利用OFDM结构以每卷有效的方式处理问题。在这项研究中,我们分析了一类近似可能的最大可能性OMOD公式的EM的收敛速率,或者在更广泛的意义上是一类问题,涉及量化数据回归。我们展示了SNR和通道条件如何对收敛率产生影响。我们通过在OMOD的背景下建立EM和近端梯度方法之间的联系来做到这一点。该连接还使我们有见识来构建新的加速和/或不精确的EM计划。加速方案在理论上具有更快的融合,而不精确的方案为我们提供了更有效地实施EM的灵活性,并具有收敛保证。此外,我们开发了一种深层EM算法,其中我们采用了不精确的EM算法的结构,并应用深度展开以训练有效的结构深网。仿真结果表明,我们的加速/不精确EM算法的运行速度要快得多,其标准EM算法的运行速度要快得多,并且深层EM算法可提供有希望的检测和运行时性能。
In this paper we study the expectation maximization (EM) technique for one-bit MIMO-OFDM detection (OMOD). Arising from the recent interest in massive MIMO with one-bit analog-to-digital converters, OMOD is a massive-scale problem. EM is an iterative method that can exploit the OFDM structure to process the problem in a per-iteration efficient fashion. In this study we analyze the convergence rate of EM for a class of approximate maximum-likelihood OMOD formulations, or, in a broader sense, a class of problems involving regression from quantized data. We show how the SNR and channel conditions can have an impact on the convergence rate. We do so by making a connection between the EM and the proximal gradient methods in the context of OMOD. This connection also gives us insight to build new accelerated and/or inexact EM schemes. The accelerated scheme has faster convergence in theory, and the inexact scheme provides us with the flexibility to implement EM more efficiently, with convergence guarantee. Furthermore we develop a deep EM algorithm, wherein we take the structure of our inexact EM algorithm and apply deep unfolding to train an efficient structured deep net. Simulation results show that our accelerated exact/inexact EM algorithms run much faster than their standard EM counterparts, and that the deep EM algorithm gives promising detection and runtime performances.