论文标题

改进辅助文本翻译任务的端到端文本图像翻译

Improving End-to-End Text Image Translation From the Auxiliary Text Translation Task

论文作者

Ma, Cong, Zhang, Yaping, Tu, Mei, Han, Xu, Wu, Linghui, Zhao, Yang, Zhou, Yu

论文摘要

端到端的文本图像翻译(TIT)旨在将图像中嵌入的源语言转换为目标语言,在最近的研究中引起了密集的关注。但是,数据稀疏性限制了端到端文本图像翻译的性能。多任务学习是一种通过探索相关任务的知识来减轻此问题的非平凡方法。在本文中,我们提出了一种新颖的文本翻译增强的文本图像翻译,该文本图像翻译以文本翻译为辅助任务训练端到端模型。通过共享模型参数和多任务培训,我们的模型能够充分利用易于使用的大规模文本并行语料库。广泛的实验结果表明,我们提出的方法的表现优于现有的端到端方法,并且具有文本翻译和识别任务的联合多任务学习取得了更好的结果,证明翻译和识别辅助任务是互补的。

End-to-end text image translation (TIT), which aims at translating the source language embedded in images to the target language, has attracted intensive attention in recent research. However, data sparsity limits the performance of end-to-end text image translation. Multi-task learning is a non-trivial way to alleviate this problem via exploring knowledge from complementary related tasks. In this paper, we propose a novel text translation enhanced text image translation, which trains the end-to-end model with text translation as an auxiliary task. By sharing model parameters and multi-task training, our model is able to take full advantage of easily-available large-scale text parallel corpus. Extensive experimental results show our proposed method outperforms existing end-to-end methods, and the joint multi-task learning with both text translation and recognition tasks achieves better results, proving translation and recognition auxiliary tasks are complementary.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源