论文标题
相对论旋转紧凑型身体的符号力学
Symplectic mechanics of relativistic spinning compact bodies I.: Covariant foundations and integrability around black holes
论文作者
论文摘要
总的来说,在给定时空中移动的延伸体运动的运动可以由粒子在全球(通常是非对地)上的粒子描述。在第一个近似过程中,这个世界是基础时空的大地测量,由此产生的动力学承认了协变和4维的哈密顿式配方。在Kerr背景时空的情况下,Hamiltonian被B. 〜Carter和现在的同名常数显示出来。在下一个近似级别上,粒子具有正确的旋转(以下简称\ textit {spin}),该粒子将时空的曲率结合在一起,并使代表性的世界线远离大地测量学。在本文中,我们奠定了一系列作品的理论基础,旨在利用旋转序列的旋转粒子运动的方程式的哈密顿性质。我们的形式主义是协变量的,十维。它处理了局部相对性与泊松几何形状工具的局部洛伦兹局部固有的归化性,并使用约束的汉密尔顿系统理论来解释质量/自旋/自旋支持的基础。作为第一个应用程序,我们考虑Kerr背景中的线性旋转运动。我们表明,由此产生的汉密尔顿系统正好接受了与杀死对称性有关的五个功能独立的运动积分,从而证明了该系统是可集成的。我们得出的结论是,对大地运动运动的线性旋转校正不会破坏整合性,并且所产生的轨迹并不混乱。我们解释了如何使用这种集成性特征来减少紧凑型物体的不对称二元系统的波形产生方案的计算成本。
In general relativity, the motion of an extended body moving in a given spacetime can be described by a particle on a (generally non-geodesic) worldline. In first approximation, this worldline is a geodesic of the underlying spacetime, and the resulting dynamics admit a covariant and 4-dimensional Hamiltonian formulation. In the case of a Kerr background spacetime, the Hamiltonian was shown to be integrable by B.~Carter and the now eponymous constant. At the next level of approximation, the particle possesses proper rotation (hereafter \textit{spin}), which couples the curvature of spacetime and drives the representative worldline away from geodesics. In this article, we lay the theoretical foundations of a series of works aiming at exploiting the Hamiltonian nature of the equations governing the motion of a spinning particle, at linear order in spin. Our formalism is covariant and 10-dimensional. It handles the degeneracies inherent to the local Lorentz invariance of general relativity with tools from Poisson geometry, and accounts for the center-of-mass/spin-supplementary-condition using constrained Hamiltonian system theory. As a first application, we consider the linear-in-spin motion in a Kerr background. We show that the resulting Hamiltonian system admits exactly five functionally independent integrals of motion related to Killing symmetries, thereby proving that the system is integrable. We conclude that linear-in-spin corrections to the geodesic motion do not break integrability, and that the resulting trajectories are not chaotic. We explain how this integrability feature can be used to reduce the computational cost of waveform generation schemes for asymmetric binary systems of compact objects.