论文标题
自我监督的深度平衡模型,用于具有理论保证的反问题
Self-Supervised Deep Equilibrium Models for Inverse Problems with Theoretical Guarantees
论文作者
论文摘要
深度平衡模型(DEQ)已成为图像重建的深层展开(DU)的强大替代方法。具有有效无限层数的DEQ模型 - 图形网络有效地显示了可以实现最新图像重建,而没有与DU相关的记忆复杂性。尽管DEQ的性能得到了广泛的研究,但现有工作主要集中在可用于培训的地面图数据的环境上。我们提出了自我监督的深度平衡模型(SelfDeq),作为第一个自我监督的重建框架,用于基于训练模型的隐式网络,这些框架是通过降采样和嘈杂的MRI测量结果。我们的理论结果表明,SelfDeq可以弥补多次收购中的不平衡采样,并符合完全监督的DEQ的性能。我们对体内MRI数据的数值结果表明,SelfDeq仅使用不采样和嘈杂的训练数据导致最先进的性能。
Deep equilibrium models (DEQ) have emerged as a powerful alternative to deep unfolding (DU) for image reconstruction. DEQ models-implicit neural networks with effectively infinite number of layers-were shown to achieve state-of-the-art image reconstruction without the memory complexity associated with DU. While the performance of DEQ has been widely investigated, the existing work has primarily focused on the settings where groundtruth data is available for training. We present self-supervised deep equilibrium model (SelfDEQ) as the first self-supervised reconstruction framework for training model-based implicit networks from undersampled and noisy MRI measurements. Our theoretical results show that SelfDEQ can compensate for unbalanced sampling across multiple acquisitions and match the performance of fully supervised DEQ. Our numerical results on in-vivo MRI data show that SelfDEQ leads to state-of-the-art performance using only undersampled and noisy training data.