论文标题
最佳的能量塑形控制,用于背后的臀部外骨骼
Optimal Energy Shaping Control for a Backdrivable Hip Exoskeleton
论文作者
论文摘要
任务依赖性控制器广泛用于外骨骼轨迹预定义轨迹,这过度限制了残留自愿活动性的个体的自愿运动。另一方面,通过改变封闭环中人体的动态特征,能量塑造提供了任务不变的援助。尽管通常使用Euler-Lagrange方程进行建模人类外观系统,但在我们以前的工作中,我们将该系统建模为端口控制的Hamiltonian系统,并且为膝盖knee-Kankle外骨骼设计了一个互连接 - 连接 - 固定 - 模具 - 基于基于基于基于互联的部件的控制器。在本文中,我们将此框架扩展到设计控制器,以进行背景外骨骼,以帮助多个任务。选择了包含运动学信息的一组基础函数,并优化了相应的系数,这使控制器可以提供适合规范性人类扭矩的扭矩,以适应日常生活的不同活动。具有两个健全的受试者的人类受试者实验表明,控制器能够减少跨不同任务的肌肉努力的能力。
Task-dependent controllers widely used in exoskeletons track predefined trajectories, which overly constrain the volitional motion of individuals with remnant voluntary mobility. Energy shaping, on the other hand, provides task-invariant assistance by altering the human body's dynamic characteristics in the closed loop. While human-exoskeleton systems are often modeled using Euler-Lagrange equations, in our previous work we modeled the system as a port-controlled-Hamiltonian system, and a task-invariant controller was designed for a knee-ankle exoskeleton using interconnection-damping assignment passivity-based control. In this paper, we extend this framework to design a controller for a backdrivable hip exoskeleton to assist multiple tasks. A set of basis functions that contains information of kinematics is selected and corresponding coefficients are optimized, which allows the controller to provide torque that fits normative human torque for different activities of daily life. Human-subject experiments with two able-bodied subjects demonstrated the controller's capability to reduce muscle effort across different tasks.