论文标题
部分可观测时空混沌系统的无模型预测
Cohomological properties of different types of weak amenability
论文作者
论文摘要
在本文中,我们处理弱的舒适性,环状舒适性,循环弱舒适性和Banach代数的点舒适性的共同体学特性。我们查看它们的一些遗传性质,并表明具有密集范围的连续同态可环保弱的敏感性,但是,在某些条件下,弱的舒适性和周期性舒适性可以保留。我们还研究了$θ-$ lau产品$ a \times_θb$和投射张量产品$ a \ hat {\ otimes} b $的这些共同体学特性。最后,我们调查了$ a^{**} $的共同体学特性,并确定$ a^{**} $的周期性弱舒适性意味着$ a $的周期性弱的不合适性。该结果对于点不及格而不是周期性弱的敏感性是正确的。
In this paper, we deal with cohomological properties of weak amenability, cyclic amenability, cyclic weak amenability and point amenability of Banach algebras. We look at some hereditary properties of them and show that continuous homomorphisms with dense range preserve cyclically weak amenability, however, weak amenability and cyclically amenability are preserved under certain conditions. We also study these cohomological properties of the $θ-$Lau product $A\times_θB$ and the projective tensor product $A\hat{\otimes} B$. Finally, we investigate the cohomological properties of $A^{**}$ and establish that cyclically weak amenability of $A^{**}$ implies cyclically weak amenability of $A$. This result is true for point amenability instead of cyclically weak amenability.