论文标题

graspcaps:熟悉的6DOF对象握把的胶囊网络方法

GraspCaps: A Capsule Network Approach for Familiar 6DoF Object Grasping

论文作者

van der Velde, Tomas, Ayoobi, Hamed, Kasaei, Hamidreza

论文摘要

随着机器人在工业环境之外变得越来越广泛,对可靠的对象抓握和操纵的需求正在增加。在这样的环境中,机器人必须能够在各种情况下掌握和操纵新颖对象。本文介绍了GraspCaps,这是一种基于胶囊网络的新型体系结构,用于为熟悉的对象生成每点6D抓取配置。 graspcap提取了点云输入中存在的对象的丰富特征向量,然后将其用于生成每点grasp向量。这种方法使网络可以为每个对象类别学习特定的掌握策略。除了抓取抓镜外,本文还提出了一种使用模拟退火生成大对象抓紧数据集的方法。然后,获得的数据集用于训练GraspCaps网络。通过广泛的实验,我们评估了提出的方法的性能,特别是在挑战实际和模拟场景中抓住熟悉的物体的成功率方面。实验结果表明,所提出的方法的总体擦伤性能明显优于所选基线。这种出色的表现突出了抓地力捕捉在实现各种情况下抓住的成功对象方面的有效性。

As robots become more widely available outside industrial settings, the need for reliable object grasping and manipulation is increasing. In such environments, robots must be able to grasp and manipulate novel objects in various situations. This paper presents GraspCaps, a novel architecture based on Capsule Networks for generating per-point 6D grasp configurations for familiar objects. GraspCaps extracts a rich feature vector of the objects present in the point cloud input, which is then used to generate per-point grasp vectors. This approach allows the network to learn specific grasping strategies for each object category. In addition to GraspCaps, the paper also presents a method for generating a large object-grasping dataset using simulated annealing. The obtained dataset is then used to train the GraspCaps network. Through extensive experiments, we evaluate the performance of the proposed approach, particularly in terms of the success rate of grasping familiar objects in challenging real and simulated scenarios. The experimental results showed that the overall object-grasping performance of the proposed approach is significantly better than the selected baseline. This superior performance highlights the effectiveness of the GraspCaps in achieving successful object grasping across various scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源