论文标题

3D贝叶斯变异全波形反演

3D Bayesian Variational Full Waveform Inversion

论文作者

Zhang, Xin, Lomas, Angus, Zhou, Muhong, Zheng, York, Curtis, Andrew

论文摘要

地震全波倒置(FWI)通过利用记录的地震波形中的信息来提供地下的高分辨率图像。这是通过解决高度非线性和非唯一逆问题来实现的。因此,贝叶斯推论用于量化溶液中的不确定性。变分推断是一种使用优化有效地提供概率的贝叶斯溶液的方法。该方法已应用于2D FWI问题,以产生完整的贝叶斯后验分布。但是,由于较高的维度和更昂贵的计算成本,该方法在3D FWI问题中的性能仍然未知。我们对3D FWI应用三种变异推理方法并分析其性能。具体而言,我们将自动差异变异推理(ADVI),Stein变分梯度下降(SVGD)和随机SVGD(SSVGD)(SSVGD)应用于3D FWI问题,并比较其结果和计算成本。结果表明,Advi是计算上最有效的方法,但系统地低估了不确定性。因此,该方法可用于提供相对较快的速度,但对地下的见解以及不确定性的下限估计值。 SVGD需要最高的计算成本,并且仍然产生偏见的结果。相反,通过在SVGD动力学中包含一个随机项,SSVGD成为Markov链蒙特卡洛方法,并以中间计算成本提供了最准确的结果。因此,我们得出的结论是,至少在小问题中,3D变化全波反转实际上是适用的,可以用来对地球的内部进行成像,并对这些图像提供合理的不确定性估计。

Seismic full-waveform inversion (FWI) provides high resolution images of the subsurface by exploiting information in the recorded seismic waveforms. This is achieved by solving a highly nonnlinear and nonunique inverse problem. Bayesian inference is therefore used to quantify uncertainties in the solution. Variational inference is a method that provides probabilistic, Bayesian solutions efficiently using optimization. The method has been applied to 2D FWI problems to produce full Bayesian posterior distributions. However, due to higher dimensionality and more expensive computational cost, the performance of the method in 3D FWI problems remains unknown. We apply three variational inference methods to 3D FWI and analyse their performance. Specifically we apply automatic differential variational inference (ADVI), Stein variational gradient descent (SVGD) and stochastic SVGD (sSVGD), to a 3D FWI problem, and compare their results and computational cost. The results show that ADVI is the most computationally efficient method but systematically underestimates the uncertainty. The method can therefore be used to provide relatively rapid but approximate insights into the subsurface together with a lower bound estimate of the uncertainty. SVGD demands the highest computational cost, and still produces biased results. In contrast, by including a randomized term in the SVGD dynamics, sSVGD becomes a Markov chain Monte Carlo method and provides the most accurate results at intermediate computational cost. We thus conclude that 3D variational full-waveform inversion is practically applicable, at least in small problems, and can be used to image the Earth's interior and to provide reasonable uncertainty estimates on those images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源