论文标题
聚合物 - 碳黑色水凝胶中粘弹性的双重起源:风化和电谱研究
Dual origin of viscoelasticity in polymer-carbon black hydrogels: a rheometry and electrical spectroscopy study
论文作者
论文摘要
通过混合纳米粒子和聚合物形成的纳米复合材料为设计具有材料和生物科学中广泛应用的功能性高级材料的设计提供了无限的创意空间。在这里,我们专注于疏水胶体烟灰颗粒的水分散体,即碳黑色(CB)与羧甲基纤维素钠(CMC)的钠盐分散,这是一种称为纤维素胶的食物添加剂,其含有疏水性的纤维素胶,这些含量含有疏水性基团,可在物理上与CB颗粒结合结合。改变CB纳米颗粒和纤维素胶的相对含量使我们能够探索包括凝胶相的丰富相图。我们使用流变计和电化学阻抗光谱研究了这种水凝胶。 CB-CMC水凝胶显示出两种截然不同的机械行为,它们被关键的CMC-CB质量比$ R_C $分开。对于$ r <r_c $,即,对于低CMC浓度,凝胶是导电性的,显示出类似玻璃的粘弹性光谱,指向由CMC装饰的CB纳米颗粒网络组成的微观结构。相比之下,大于$ r_c $的CMC浓度的凝胶是非导电的,表明CB纳米颗粒作为隔离簇分散在纤维素胶矩阵中,并充当CMC网络的物理交联,因此为复合材料提供了机械刚性。此外,在浓度范围内,$ r_c $ cb-cmc凝胶显示出强烈取决于CMC浓度的幂律粘弹性频谱。这些放松光谱可以重新缩放到主曲线上,该曲线以高频极限表现出幂律缩放,其指数遵循ZIMM理论,表明CMC在$ r_c $> r_c $的凝胶粘弹性属性中起关键作用。我们的结果提供了CB-CMC分散剂的表征,这些分散剂可用于基于疏水相互作用设计纳米复合材料。
Nanocomposites formed by mixing nanoparticles and polymers offer a limitless creative space for the design of functional advanced materials with a broad range of applications in materials and biological sciences. Here we focus on aqueous dispersions of hydrophobic colloidal soot particles, namely carbon black (CB) dispersed with a sodium salt of carboxymethylcellulose (CMC), a food additive known as cellulose gum that bears hydrophobic groups, which are liable to bind physically to CB particles. Varying the relative content of CB nanoparticles and cellulose gum allows us to explore a rich phase diagram that includes a gel phase. We investigate this hydrogel using rheometry and electrochemical impedance spectroscopy. CB-CMC hydrogels display two radically different types of mechanical behaviors that are separated by a critical CMC-to-CB mass ratio $r_c$. For $r<r_c$, i.e., for low CMC concentration, the gel is electrically conductive and shows a glassy-like viscoelastic spectrum, pointing to a microstructure composed of a percolated network of CB nanoparticles decorated by CMC. In contrast, gels with CMC concentration larger than $r_c$ are non-conductive, indicating that the CB nanoparticles are dispersed in the cellulose gum matrix as isolated clusters, and act as physical crosslinkers of the CMC network, hence providing mechanical rigidity to the composite. Moreover, in the concentration range, $r>r_c$ CB-CMC gels display a power-law viscoelastic spectrum that depends strongly on the CMC concentration. These relaxation spectra can be rescaled onto a master curve that exhibits a power-law scaling in the high-frequency limit, with an exponent that follows Zimm theory, showing that CMC plays a key role in the gel viscoelastic properties for $r>r_c$. Our results offer a characterization of CB-CMC dispersions that will be useful for designing nanocomposites based on hydrophobic interactions.