论文标题

在新型班级发现中建模阶层间和类内部约束

Modeling Inter-Class and Intra-Class Constraints in Novel Class Discovery

论文作者

Li, Wenbin, Fan, Zhichen, Huo, Jing, Gao, Yang

论文摘要

Novel Class Discovery(NCD)旨在学习一个模型,该模型将常见知识从标有数据集的类别转移到另一个未标记的数据集,并发现其中的新类(群集)。已经提出了许多方法,以及精心设计的培训管道和适当的目标,并在NCD任务上提高了性能。尽管如此,我们发现现有方法不能充分利用NCD设置的本质。为此,在本文中,我们建议基于对称的Kullback-Leibler Divergence(SKLD)对NCD中的类间和阶级约束进行建模。具体而言,我们提出了一个类间的SKLD约束,以有效利用标签和未标记类之间的不相交关系,从而在嵌入式空间中对不同类别的可分离性进行了可分离性。此外,我们提出了类内的SKLD约束,以明确限制样本及其增强之间的关系内相关性,并同时确保训练过程的稳定性。我们对流行的CIFAR10,CIFAR100和Imagenet基准进行了广泛的实验,并成功地表明,我们的方法可以建立新的艺术状态并可以取得重大的性能改进,例如,在Task-Aware/-Agagnostic Issstact下,在CIFAR100-50数据集中分配了3.5%/3.7%的群集精度改进,以前是以前的方法。代码可在https://github.com/fanzhichen/ncd-iic上找到。

Novel class discovery (NCD) aims at learning a model that transfers the common knowledge from a class-disjoint labelled dataset to another unlabelled dataset and discovers new classes (clusters) within it. Many methods, as well as elaborate training pipelines and appropriate objectives, have been proposed and considerably boosted performance on NCD tasks. Despite all this, we find that the existing methods do not sufficiently take advantage of the essence of the NCD setting. To this end, in this paper, we propose to model both inter-class and intra-class constraints in NCD based on the symmetric Kullback-Leibler divergence (sKLD). Specifically, we propose an inter-class sKLD constraint to effectively exploit the disjoint relationship between labelled and unlabelled classes, enforcing the separability for different classes in the embedding space. In addition, we present an intra-class sKLD constraint to explicitly constrain the intra-relationship between a sample and its augmentations and ensure the stability of the training process at the same time. We conduct extensive experiments on the popular CIFAR10, CIFAR100 and ImageNet benchmarks and successfully demonstrate that our method can establish a new state of the art and can achieve significant performance improvements, e.g., 3.5%/3.7% clustering accuracy improvements on CIFAR100-50 dataset split under the task-aware/-agnostic evaluation protocol, over previous state-of-the-art methods. Code is available at https://github.com/FanZhichen/NCD-IIC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源