论文标题

原位模型下载以实现6G移动网络中的通用边缘AI

In-situ Model Downloading to Realize Versatile Edge AI in 6G Mobile Networks

论文作者

Huang, Kaibin, Wu, Hai, Liu, Zhiyan, Qi, Xiaojuan

论文摘要

预计第六代移动网络将以网络边缘的机器学习和AI算法的无处不在。随着Edge AI的快速进步,现在是时候实现将智能下载到Edge设备(例如智能手机和传感器)上的时候了。为了实现此版本,我们在本文中提出了一种新技术,即“原位模型下载”,旨在通过从网络中的AI库下载来实现透明和实时替换对设备AI模型的透明和实时更换。它的独特功能是适应时间变化的情况(例如,应用程序,位置和时间),设备的异质存储和计算能力以及频道状态。提出的框架的一个关键组成部分是一组技术,该技术在深度级别,参数级别或位级别以支持自适应模型下载的深度级别下载模型。我们进一步提出了一个虚拟化的6G网络体系结构,定制了用于部署原位模型,并使用三层(Edge,Local和Central)AI库的关键功能下载。此外,还进行了实验以量化6G连通性要求,并讨论了与拟议技术有关的研究机会。

The sixth-generation (6G) mobile networks are expected to feature the ubiquitous deployment of machine learning and AI algorithms at the network edge. With rapid advancements in edge AI, the time has come to realize intelligence downloading onto edge devices (e.g., smartphones and sensors). To materialize this version, we propose a novel technology in this article, called in-situ model downloading, that aims to achieve transparent and real-time replacement of on-device AI models by downloading from an AI library in the network. Its distinctive feature is the adaptation of downloading to time-varying situations (e.g., application, location, and time), devices' heterogeneous storage-and-computing capacities, and channel states. A key component of the presented framework is a set of techniques that dynamically compress a downloaded model at the depth-level, parameter-level, or bit-level to support adaptive model downloading. We further propose a virtualized 6G network architecture customized for deploying in-situ model downloading with the key feature of a three-tier (edge, local, and central) AI library. Furthermore, experiments are conducted to quantify 6G connectivity requirements and research opportunities pertaining to the proposed technology are discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源