论文标题
铁磁性海森堡模型与dzyaloshinskii-moriya互动
Ferromagnetic Heisenberg model with the Dzyaloshinskii-Moriya interaction
论文作者
论文摘要
Spin-1/2 Heisenberg模型是通过使用旋转操作员的矩阵形式$ \ hat {s} _x,\ hat {s} _y $和$ \ hat {s} _z _z _z _ $ \ hat {s} _z _z $在三二二维中配制的。被考虑的哈密顿包括双线性交换交互参数$(j_x,j_y,j_z)$,dzyaloshinskii-moriya互动$(Δ_x,δ_y,Δ_z)$和外部磁场组件$(h_x,h_y,h_y,h__z)$。磁化强度及其组件是在MFA中使用一般各向异性情况获得的,其中$ j_x \ neq j_y \ neq j_z $,用于各种协调数$ q $的值。然后,详细研究了磁化的热变化,以获取具有$ J_X = J_Y = J_Z> 0 $的各向同性情况模型的相图。发现该模型表现出铁磁,顺磁性,随机相区域和额外的铁磁相,在该相位磁性分支的分支上。
The spin-1/2 Heisenberg model is formulated in terms of a mean-field approximation (MFA) by using the matrix forms of spin operators $\hat{S}_x,\hat{S}_y$ and $\hat{S}_z$ in three-dimensions. The considered Hamiltonian consists of bilinear exchange interaction parameters $(J_x,J_y,J_z)$, Dzyaloshinskii-Moriya interactions $(Δ_x,Δ_y,Δ_z)$ and external magnetic field components $(H_x,H_y,H_z)$. The magnetization and its components are obtained in the MFA with the general anisotropic case with $J_x\neq J_y \neq J_z$ for various values of coordination numbers $q$. Then, the thermal variations of magnetizations are investigated in detail to obtain the phase diagrams of the model for the isotropic case with $J_x=J_y=J_z>0$. It is found that the model exhibits ferromagnetic, paramagnetic, random phase regions and an extra ferromagnetic phase at which the components of magnetizations present branching.