论文标题
在具有吸收状态的高阶过程中,有限尺寸缩放
Anomalous finite-size scaling in higher-order processes with absorbing states
论文作者
论文摘要
我们在大Viration理论的角度研究了完全连接的网络上的标准和高阶出生死亡过程(在某些情况下也称为Wentzel-Kramers-Brillouin(WKB)方法)。我们获得了“活动”站点分数的平稳概率分布的领先和临时术语的一般表达式,这是参数和网络大小$ n $的函数。我们从文献中复制了几个结果,尤其是我们得出了$ q $ usctiblesible感染的($ q-sis $)模型的固定分布的所有时刻,即,高阶流行病模型需要$ q $ active(“受感染”)站点以激活另一个站点。我们发现了具有非平凡有限大小尺寸的特性的活动位点的波动的非常丰富的场景。特别是,我们表明,差异与均值的比率以$ $ [1 \ leq Q \ leq 3] $的关键差异,最大可变性为$ q = 2 $,确认复杂接触过程可以表现出特殊的缩放功能,包括野生变异性,以及在大型范围中均以大型驱动的范围来描述其本来的范围。具有吸收状态的系统。
We study standard and higher-order birth-death processes on fully connected networks, within the perspective of large-deviation theory (also referred to as Wentzel-Kramers-Brillouin (WKB) method in some contexts). We obtain a general expression for the leading and next-to-leading terms of the stationary probability distribution of the fraction of "active" sites, as a function of parameters and network size $N$. We reproduce several results from the literature and, in particular, we derive all the moments of the stationary distribution for the $q$-susceptible-infected-susceptible ($q-SIS$) model, i.e., a high-order epidemic model requiring of $q$ active ("infected") sites to activate an additional one. We uncover a very rich scenario for the fluctuations of the fraction of active sites, with non-trivial finite-size-scaling properties. In particular, we show that the variance-to-mean ratio diverges at criticality for $[1 \leq q\leq 3]$, with a maximal variability at $q=2$, confirming that complex-contagion processes can exhibit peculiar scaling features including wild variability and that the leading-order in a large-deviation approach does not suffice to describe them: next-to-leading terms are essential to capture the intrinsic singularity at the origin of systems with absorbing states.