论文标题
使用自制的低温透明放大器的量子点电荷传感的快速时间域电流测量
Fast time-domain current measurement for quantum dot charge sensing using a homemade cryogenic transimpedance amplifier
论文作者
论文摘要
我们使用自制的GAAS高电动机 - 动力 - 驱动器 - 低温透射式变性放大器(TIA)开发了高速和低噪声时域电流测量方案。该方案对于广泛的低温电流测量值而言,包括半导体自旋量读数,这是因为TIA的输入阻抗与商用室温度的TIA相当。 TIA具有较大的频率带宽和低噪声底,其权衡由反馈电阻$ r_ {fb} $支配。较低的$ r_ {fb} $ 50 k $ω$具有-3db截止频率$ f _ { - 3db} $ = 28 MHz和噪声 - 环$ nf = 8.5 \ times 10^{-27} $ a $ a $ a $ a $/k $ r r _ $ nf = 1.0 \ times 10^{ - 27} $ a $^{2} $/hz和$ f _ { - 3db} $ = 4.5 MHz。 2-Na峰值与峰值方波的时间域测量,该测量通过充电感测模拟标准的自旋量读数技术的输出,证明了信噪比(SNR)为12.7,其时间分辨率为48 ns,以$ r_ {fb} $ = 200 k $ = 200 k $ω$的范围,该范围是有利的,该范围的价值是xulety的,该范围是有利的。技术。可以通过使用更小(较大)$ r_ {fb} $来以SNR(或VICE)成本进一步改善时间分辨率,从而通过使用低通滤波器限制频带,从而进一步降低了噪声图。我们的计划最适合用于读取电子产品的低温传感器,这些传感器需要高度分辨率和当前灵敏度,因此为各种基本研究和工业应用提供了解决方案。
We developed a high-speed and low-noise time-domain current measurement scheme using a homemade GaAs high-electron-mobility-transistor-based cryogenic transimpedance amplifier (TIA). The scheme is versatile for broad cryogenic current measurements, including semiconductor spin-qubit readout, owing to the TIA's having low input impedance comparable to that of commercial room-temperature TIAs. The TIA has a broad frequency bandwidth and a low noise floor, with a trade-off between them governed by the feedback resistance $R_{FB}$. A lower $R_{FB}$ of 50 k$Ω$ enables high-speed current measurement with a -3dB cutoff frequency $f_{-3dB}$ = 28 MHz and noise-floor $NF = 8.5 \times 10^{-27}$ A$^{2}$/Hz, while a larger $R_{FB}$ of 400 k$Ω$ provides low-noise measurement with $NF = 1.0 \times 10^{-27}$ A$^{2}$/Hz and $f_{-3dB}$ = 4.5 MHz. Time-domain measurement of a 2-nA peak-to-peak square wave, which mimics the output of the standard spin-qubit readout technique via charge sensing, demonstrates a signal-to-noise ratio (SNR) of 12.7, with the time resolution of 48 ns, for $R_{FB}$ = 200 k$Ω$, which compares favorably with the best-reported values for the radio-frequency (RF) reflectometry technique. The time resolution can be further improved at the cost of the SNR (or vice versa) by using an even smaller (larger) $R_{FB}$, with a further reduction in the noise figure possible by limiting the frequency band with a low-pass filter. Our scheme is best suited for readout electronics for cryogenic sensors that require a high time resolution and current sensitivity and thus provides a solution for various fundamental research and industrial applications.