论文标题
内核密度估计的学习转移操作员
Learning Transfer Operators by Kernel Density Estimation
论文作者
论文摘要
从数据中推断转移运算符的推断通常被表达为在ULAM方法上取决的经典问题。传统描述称为ULAM-GALERKIL方法,涉及将其投影到基础函数上,该功能表示为在矩形细网格上支持的特征函数。从这个角度来看,使用直方图方法可以将ULAM-GALERKIL方法解释为密度估计。在这项研究中,我们在统计密度估计的框架内重述了问题。这种替代性观点允许对偏差和差异进行明确和严格的分析,从而促进了对均方误差的讨论。通过利用逻辑图和马尔可夫图的全面示例,我们证明了这种方法在估计Frobenius-Perron Operator的特征向量方面的有效性和有效性。我们比较了直方图密度估计(HDE)和内核密度估计(KDE)方法的性能,并发现KDE通常在准确性方面优于HDE。但是,重要的是要注意,KDE在边界点和跳跃周围表现出局限性。根据我们的研究发现,我们建议将其他密度估计方法纳入该领域的可能性,并提出对基于KDE的估计对高维地图的应用的未来研究。这些发现为研究人员和从业人员提供了宝贵的见解,从事估计Frobenius-Perron操作员的工作,并强调了在这一研究领域中密度估计技术的潜力。 关键字:转移操作员; Frobenius-Perron操作员;概率密度估计; Ulam-Galerkin方法;内核密度估计;直方图密度估计。
Inference of transfer operators from data is often formulated as a classical problem that hinges on the Ulam method. The conventional description, known as the Ulam-Galerkin method, involves projecting onto basis functions represented as characteristic functions supported over a fine grid of rectangles. From this perspective, the Ulam-Galerkin approach can be interpreted as density estimation using the histogram method. In this study, we recast the problem within the framework of statistical density estimation. This alternative perspective allows for an explicit and rigorous analysis of bias and variance, thereby facilitating a discussion on the mean square error. Through comprehensive examples utilizing the logistic map and a Markov map, we demonstrate the validity and effectiveness of this approach in estimating the eigenvectors of the Frobenius-Perron operator. We compare the performance of Histogram Density Estimation(HDE) and Kernel Density Estimation(KDE) methods and find that KDE generally outperforms HDE in terms of accuracy. However, it is important to note that KDE exhibits limitations around boundary points and jumps. Based on our research findings, we suggest the possibility of incorporating other density estimation methods into this field and propose future investigations into the application of KDE-based estimation for high-dimensional maps. These findings provide valuable insights for researchers and practitioners working on estimating the Frobenius-Perron operator and highlight the potential of density estimation techniques in this area of study. Keywords: Transfer Operators; Frobenius-Perron operator; probability density estimation; Ulam-Galerkin method; Kernel Density Estimation; Histogram Density Estimation.