论文标题

IR-MCL:基于隐性表示的在线全球本地化

IR-MCL: Implicit Representation-Based Online Global Localization

论文作者

Kuang, Haofei, Chen, Xieyuanli, Guadagnino, Tiziano, Zimmerman, Nicky, Behley, Jens, Stachniss, Cyrill

论文摘要

确定移动机器人的状态是机器人导航系统的重要组成部分。在本文中,我们解决了使用2D LIDAR数据在室内环境中估算机器人姿势的问题,并研究了现代环境模型如何改善金标准蒙特卡罗定位(MCL)系统。我们建议使用神经网络隐式表示场景。借助验证的网络,我们可以合成2D激光扫描,以通过音量渲染进行任意机器人姿势。基于隐式表示,我们可以在合成和实际扫描作为观察模型之间获得相似性,并将其集成到MCL系统中以执行准确的定位。我们评估了自录制数据集和三个公开使用的方法。我们证明,我们可以使用我们的方法准确有效地定位机器人,从而超过了最新方法的本地化性能。实验表明,提出的隐式表示能够预测更准确的2D激光扫描,从而为我们的基于粒子滤波器的定位提供了改进的观察模型。我们方法的代码将在以下网址提供:https://github.com/prbonn/ir-mcl。

Determining the state of a mobile robot is an essential building block of robot navigation systems. In this paper, we address the problem of estimating the robots pose in an indoor environment using 2D LiDAR data and investigate how modern environment models can improve gold standard Monte-Carlo localization (MCL) systems. We propose a neural occupancy field to implicitly represent the scene using a neural network. With the pretrained network, we can synthesize 2D LiDAR scans for an arbitrary robot pose through volume rendering. Based on the implicit representation, we can obtain the similarity between a synthesized and actual scan as an observation model and integrate it into an MCL system to perform accurate localization. We evaluate our approach on self-recorded datasets and three publicly available ones. We show that we can accurately and efficiently localize a robot using our approach surpassing the localization performance of state-of-the-art methods. The experiments suggest that the presented implicit representation is able to predict more accurate 2D LiDAR scans leading to an improved observation model for our particle filter-based localization. The code of our approach will be available at: https://github.com/PRBonn/ir-mcl.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源