论文标题
多项式的小部分部分和指数总和的平均值
Small fractional parts of polynomials and mean values of exponential sums
论文作者
论文摘要
令$ k_i \(i = 1,2,\ ldots,t)$是自然数字,$ k_1> k_2> \ cdots> k_t> k_t> 0 $,$ k_1 \ geq 2 $和$ t <k_1。 给定实数$α_{ji} \(1 \ leq j \ leq t,\ 1 \ leq i \ leq s)$,我们考虑形状的多项式 $$φ_i(x)=α_{1i} x^{k_1}+α_{2i} x^{k_2}+\ cdots+α__{ti} x^{k_t},$$ 并在形状$$φ_1(x_1)+φ_2(x_2)+\ cdots+φ__s(x_s),$$中得出多项式分数的上限 通过应用与vinogradov的平均值定理相关的新型平均值估计值。我们的结果改善了Baker(2017)的早期定理。
Let $k_i\ (i=1,2,\ldots,t)$ be natural numbers with $k_1>k_2>\cdots>k_t>0$, $k_1\geq 2$ and $t<k_1.$ Given real numbers $α_{ji}\ (1\leq j\leq t,\ 1\leq i\leq s)$, we consider polynomials of the shape $$φ_i(x)=α_{1i}x^{k_1}+α_{2i}x^{k_2}+\cdots+α_{ti}x^{k_t},$$ and derive upper bounds for fractional parts of polynomials in the shape $$φ_1(x_1)+φ_2(x_2)+\cdots+φ_s(x_s),$$ by applying novel mean value estimates related to Vinogradov's mean value theorem. Our results improve on earlier Theorems of Baker (2017).