论文标题

滚动快门倒置:将滚动快门图像带到高帧率全局快门视频

Rolling Shutter Inversion: Bring Rolling Shutter Images to High Framerate Global Shutter Video

论文作者

Fan, Bin, Dai, Yuchao, Li, Hongdong

论文摘要

单个滚动器(RS)图像可以被视为在曝光持续时间内通过(虚拟)移动GS摄像机捕获的一系列全局弹药(GS)图像的排行组合。尽管RS摄像机被广泛使用,但RS效应会导致明显的图像失真,尤其是在快速相机运动的情况下,阻碍了下游计算机视觉任务。在本文中,我们建议将RS图像捕获机制倒置,即从两个时间连续的RS帧中恢复连续的高帧率GS视频。我们将此任务称为RS时间超级分辨率(RSSR)问题。 RSSR是一项非常具有挑战性的任务,据我们所知,迄今为止还没有实际的解决方案。本文提出了一种新颖的基于深度学习的解决方案。通过利用RS成像过程的多视图几何关系,我们基于学习的框架成功地实现了高帧率GS生成。具体而言,可以确定三个新的贡献:(i)在恒定速度以及恒定加速运动模型下双向RS不确定流动的新型制剂。 (ii)一个简单的线性缩放操作,它桥接了RS不合适流量和常规光流。 (iii)与不同扫描线相对应的不同rs不合理流动之间的新的相互转换方案。我们的方法还利用了深度学习框架内的基本时空几何关系,在此之外,不需要任何其他监督。在这些贡献的基础上,我们代表了第一个滚动的时间超级分辨率深网,它可以从仅两个RS框架中恢复高帧率GS视频。合成数据和实际数据的广泛实验结果表明,我们提出的方法可以产生具有丰富细节的高质量GS图像序列,从而表现优于最先进的方法。

A single rolling-shutter (RS) image may be viewed as a row-wise combination of a sequence of global-shutter (GS) images captured by a (virtual) moving GS camera within the exposure duration. Although RS cameras are widely used, the RS effect causes obvious image distortion especially in the presence of fast camera motion, hindering downstream computer vision tasks. In this paper, we propose to invert the RS image capture mechanism, i.e., recovering a continuous high framerate GS video from two time-consecutive RS frames. We call this task the RS temporal super-resolution (RSSR) problem. The RSSR is a very challenging task, and to our knowledge, no practical solution exists to date. This paper presents a novel deep-learning based solution. By leveraging the multi-view geometry relationship of the RS imaging process, our learning-based framework successfully achieves high framerate GS generation. Specifically, three novel contributions can be identified: (i) novel formulations for bidirectional RS undistortion flows under constant velocity as well as constant acceleration motion model. (ii) a simple linear scaling operation, which bridges the RS undistortion flow and regular optical flow. (iii) a new mutual conversion scheme between varying RS undistortion flows that correspond to different scanlines. Our method also exploits the underlying spatial-temporal geometric relationships within a deep learning framework, where no additional supervision is required beyond the necessary middle-scanline GS image. Building upon these contributions, we represent the very first rolling-shutter temporal super-resolution deep-network that is able to recover high framerate GS videos from just two RS frames. Extensive experimental results on both synthetic and real data show that our proposed method can produce high-quality GS image sequences with rich details, outperforming the state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源