论文标题
心脏功能的不确定性量化,快速稳健的参数估计
Fast and robust parameter estimation with uncertainty quantification for the cardiac function
论文作者
论文摘要
参数估计和不确定性定量在计算心脏病学中至关重要,因为它们可以忠实地复制身体患者行为的数字双胞胎的构建。必须设计出强大而有效的数学方法,以适合许多模型参数,从几个可能是无创,嘈杂的观察开始。此外,有效的临床翻译需要短的执行时间和少量的计算资源。在贝叶斯统计的框架中,我们将最大后验估计和哈密顿蒙特卡洛结合在一起,以找到模型参数及其后分布的近似值。为了减少计算工作,我们采用了3D心脏机电模型的精确人工神经网络替代,并与0D心脏循环模型相结合。快速模拟和最少的内存要求是通过使用无基质方法,自动分化和自动矢量化来达到的。此外,我们解释了替代建模误差和测量误差。我们在计算机测试案例中执行三种不同的方法,从心室功能到整个心血管系统,涉及全心脏力学,动脉和静脉循环。当感兴趣的量中存在高水平的信噪比与模型参数的随机初始化,以适当的间隔存在感兴趣的量时,提出的方法是可靠的。事实上,通过在标准笔记本电脑上使用单个中央处理单元和几个小时的计算,我们就会达到所有模型参数的小相对误差,并估算后分布,这些误差包含90%可信度区域内的真实值。有了这些好处,我们的方法符合临床开发的要求,同时遵守绿色计算实践。
Parameter estimation and uncertainty quantification are crucial in computational cardiology, as they enable the construction of digital twins that faithfully replicate the behavior of physical patients. Robust and efficient mathematical methods must be designed to fit many model parameters starting from a few, possibly non-invasive, noisy observations. Moreover, the effective clinical translation requires short execution times and a small amount of computational resources. In the framework of Bayesian statistics, we combine Maximum a Posteriori estimation and Hamiltonian Monte Carlo to find an approximation of model parameters and their posterior distributions. To reduce the computational effort, we employ an accurate Artificial Neural Network surrogate of 3D cardiac electromechanics model coupled with a 0D cardiocirculatory model. Fast simulations and minimal memory requirements are achieved by using matrix-free methods, automatic differentiation and automatic vectorization. Furthermore, we account for the surrogate modeling error and measurement error. We perform three different in silico test cases, ranging from the ventricular function to the entire cardiovascular system, involving whole-heart mechanics, arterial and venous circulation. The proposed method is robust when high levels of signal-to-noise ratio are present in the quantities of interest in combination with a random initialization of the model parameters in suitable intervals. As a matter of fact, by employing a single central processing unit on a standard laptop and a few hours of computations, we attain small relative errors for all model parameters and we estimate posterior distributions that contain the true values inside the 90% credibility regions. With these benefits, our approach meets the requirements for clinical exploitation, while being compliant with Green Computing practices.