论文标题

胸部 - 培训:使用解剖学先验概率图进行胸部疾病分类的新型基于注意力的结构

ThoraX-PriorNet: A Novel Attention-Based Architecture Using Anatomical Prior Probability Maps for Thoracic Disease Classification

论文作者

Hossain, Md. Iqbal, Zunaed, Mohammad, Ahmed, Md. Kawsar, Hossain, S. M. Jawwad, Hasan, Anwarul, Hasan, Taufiq

论文摘要

目的:基于医学图像的计算机辅助疾病诊断和预后是一个快速新兴领域。许多卷积神经网络(CNN)结构是由胸部X射线图像的疾病分类和定位研究人员开发的。众所周知,与其他不同的解剖区域相比,在特定的解剖区域中更有可能发生不同的胸病病变。本文旨在将这种疾病和区域依赖性的先前概率分布纳入深度学习框架。方法:我们介绍了胸部 - 培训,这是一种基于注意力的CNN模型,用于胸部疾病分类。我们首先估计依赖疾病的空间概率,即解剖学先验,这表明在胸部X射线图像中特定区域中发生疾病的可能性。接下来,我们开发了一种新型的基于注意力的分类模型,该模型结合了估计的解剖学先验和自动提取感兴趣的胸部(ROI)掩模的信息,以提供对从深卷积网络产生的特征图的关注。与以前利用各种自我注意机制的作品不同,该方法利用提取的胸部ROI面膜以及概率的解剖学先验信息,该信息选择了不同疾病的关注区域以提供注意力。结果:所提出的方法显示,与现有的最新方法相比,NIH ChestX-Ray14数据集的疾病分类表现出色,同时到达ROC曲线(%AUC)下的面积为84.67。关于疾病的定位,与最先进的方法相比,解剖学先验的注意方法表现出竞争性能,其准确性为0.80、0.63、0.49、0.33、0.28、0.28、0.21和0.04,与联合(IOU)相交的相交(IOU)阈值(IOU)脱水率为0.1,0.2,0.2,0.3,0.4,0.4,0.4,0.5,0.5,0.5,0.5,0.6,0.6,0.6和0.7,0.7,0.7,0.6和0.7 ,,

Objective: Computer-aided disease diagnosis and prognosis based on medical images is a rapidly emerging field. Many Convolutional Neural Network (CNN) architectures have been developed by researchers for disease classification and localization from chest X-ray images. It is known that different thoracic disease lesions are more likely to occur in specific anatomical regions compared to others. This article aims to incorporate this disease and region-dependent prior probability distribution within a deep learning framework. Methods: We present the ThoraX-PriorNet, a novel attention-based CNN model for thoracic disease classification. We first estimate a disease-dependent spatial probability, i.e., an anatomical prior, that indicates the probability of occurrence of a disease in a specific region in a chest X-ray image. Next, we develop a novel attention-based classification model that combines information from the estimated anatomical prior and automatically extracted chest region of interest (ROI) masks to provide attention to the feature maps generated from a deep convolution network. Unlike previous works that utilize various self-attention mechanisms, the proposed method leverages the extracted chest ROI masks along with the probabilistic anatomical prior information, which selects the region of interest for different diseases to provide attention. Results: The proposed method shows superior performance in disease classification on the NIH ChestX-ray14 dataset compared to existing state-of-the-art methods while reaching an area under the ROC curve (%AUC) of 84.67. Regarding disease localization, the anatomy prior attention method shows competitive performance compared to state-of-the-art methods, achieving an accuracy of 0.80, 0.63, 0.49, 0.33, 0.28, 0.21, and 0.04 with an Intersection over Union (IoU) threshold of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源