论文标题

POPNASV2:有效的多目标神经体系结构搜索技术

POPNASv2: An Efficient Multi-Objective Neural Architecture Search Technique

论文作者

Falanti, Andrea, Lomurno, Eugenio, Samele, Stefano, Ardagna, Danilo, Matteucci, Matteo

论文摘要

自动化最佳神经网络模型的研究是一项在过去几年中获得越来越多的相关性的任务。在这种情况下,神经体系结构搜索(NAS)代表了最有效的技术,其结果与手工制作的架构的最新状态相媲美。但是,这种方法需要大量的计算功能以及研究时间,这使其在许多现实世界中的使用范围都使其使用范围。凭借其基于顺序模型的优化策略,进行性神经体系结构搜索(PNAS)代表了可能面对此资源问题的可能一步。尽管发现的网络体系结构具有质量,但该技术仍在研究时间限制。考虑到多目标优化问题,帕累托最佳的进行性神经体系结构搜索(POPNAS)已经迈出了这一方向的重要一步。本文提出了一种新版本的帕累托最佳进步神经体系结构搜索,称为popnasv2。我们的方法增强了其第一个版本并提高了其性能。我们通过添加新操作员并提高了两个预测变量的质量来扩大搜索空间,从而构建了更准确的帕累托阵线。此外,我们引入了细胞当量检查,并通过自适应贪婪的探索步骤丰富了搜索策略。我们的努力使POPNASV2可以通过平均4倍搜索时间速度实现PNAS样性能。

Automating the research for the best neural network model is a task that has gained more and more relevance in the last few years. In this context, Neural Architecture Search (NAS) represents the most effective technique whose results rival the state of the art hand-crafted architectures. However, this approach requires a lot of computational capabilities as well as research time, which makes prohibitive its usage in many real-world scenarios. With its sequential model-based optimization strategy, Progressive Neural Architecture Search (PNAS) represents a possible step forward to face this resources issue. Despite the quality of the found network architectures, this technique is still limited in research time. A significant step in this direction has been done by Pareto-Optimal Progressive Neural Architecture Search (POPNAS), which expands PNAS with a time predictor to enable a trade-off between search time and accuracy, considering a multi-objective optimization problem. This paper proposes a new version of the Pareto-Optimal Progressive Neural Architecture Search, called POPNASv2. Our approach enhances its first version and improves its performance. We expanded the search space by adding new operators and improved the quality of both predictors to build more accurate Pareto fronts. Moreover, we introduced cell equivalence checks and enriched the search strategy with an adaptive greedy exploration step. Our efforts allow POPNASv2 to achieve PNAS-like performance with an average 4x factor search time speed-up.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源