论文标题
快速争夺Kerr-Ads中的共同信息$ _ {\ textbf {5}} $
Fast Scrambling of mutual information in Kerr-AdS$_{\textbf{5}}$
论文作者
论文摘要
由于赤道冲击波,我们计算出TFD状态双重偶发的互信息的破坏,其在$ ADS_5 $中相同的角洞。冲击波尊重Kerr几何形状的公理对称性,具有特定的Angular Momenta $ \ Mathcal {l} _ {ϕ_1} $&$ \ MATHCAL {L} _ {n ϕ_2} $。所考虑的子系统是$左$中的半球,$ right $ dual cfts以$ s^3 $作为边界的赤道。我们通过确定晚期HRT表面的生长来计算互信息的变化。我们发现,在末段,直到乱七八糟的时间,瞬时Lyapunov索引$λ_l^{(min)} $由$κ= \ frac {2πt_h} {(1-μ\,\ nathcal {l} _+)$ and $2π $μ$分别表示黑洞的温度和地平线速度,而$ \ nathcal {l} _+= \ Mathcal {l} _ {ϕ_1}+\ Mathcal {l} _ {l} _ {ϕ_2} $。我们还发现,对于非超端几何形状,无效扰动服从$ \ Mathcal {l} _+<μ^{ - 1} $,以从$ ads $界限到达外界。 $κτ_*\ log \ mathcal {s} $在很晚的时间里进行的争夺时间,其中$ \ Mathcal {s} $是Kerr熵。我们还发现,由于与$ \ log(1-μ\,\ Mathcal {l} _+)^{ - 1} $成比例的术语,争夺的开始被延迟了,该术语并不广泛,并且与Kerr黑洞的熵不扩展。
We compute the disruption of mutual information in a TFD state dual to a Kerr black hole with equal angular momenta in $AdS_5$ due to an equatorial shockwave. The shockwave respects the axi-symmetry of the Kerr geometry with specific angular momenta $\mathcal{L}_{ϕ_1}$ & $\mathcal{L}_{ϕ_2}$. The sub-systems considered are hemispheres in the $left$ and the $right$ dual CFTs with the equator of the $S^3$ as their boundary. We compute the change in the mutual information by determining the growth of the HRT surface at late times. We find that at late times leading upto the scrambling time the minimum value of the instantaneous Lyapunov index $λ_L^{(min)}$ is bounded by $κ=\frac{2πT_H}{(1-μ\,\mathcal{L}_+)}$ and is found to be greater than $2πT_H$ in certain regimes with $T_H$ and $μ$ denoting the black hole's temperature and the horizon angular velocity respectively while $\mathcal{L}_+=\mathcal{L}_{ϕ_1}+\mathcal{L}_{ϕ_2}$. We also find that for non-extremal geometries the null perturbation obeys $\mathcal{L}_+<μ^{-1}$ for it to reach the outer horizon from the $AdS$ boundary. The scrambling time at very late times is given by $κτ_*\approx\log \mathcal{S}$ where $\mathcal{S}$ is the Kerr entropy. We also find that the onset of scrambling is delayed due to a term proportional to $\log(1-μ\,\mathcal{L}_+)^{-1}$ which is not extensive and does not scale with the entropy of Kerr black hole.