论文标题
有限形态的内部速率
Inner rates of finite morphisms
论文作者
论文摘要
令$(x,0)$为复杂的分析表面细菌,嵌入$(\ mathbb {c}^n,0)$中,具有孤立的奇异性,$φ=(g,f):(x,0)\ longrightArrow(\ mathbb {c}^2,0)$是有限的。我们定义了一个形态$φ$的分析不变的家族,称为$φ$。通过内部速率,我们研究了与形态$φ$相关的极性曲线,当固定曲线$(gf)^{ - 1}(0)$的拓扑数据和表面胚芽$(x,0)$,从而解决了一个称为极性探索的问题。我们还使用内部速率来研究非恒定全态函数的Milnor纤维的几何形状$ f:(x,0)\ longrightArrow(\ mathbb {c},0)$。主要结果是一个公式,该公式涉及表面胚芽$(x,0)$的拓扑不变的内部速率和极性曲线以及曲线$(gf)^{ - 1}(0)$。
Let $(X, 0)$ be a complex analytic surface germ embedded in $(\mathbb{C}^n,0)$ with an isolated singularity and $Φ=(g,f):(X,0) \longrightarrow (\mathbb{C}^2,0)$ be a finite morphism. We define a family of analytic invariants of the morphism $Φ$, called inner rates of $Φ$. By means of the inner rates we study the polar curve associated to the morphism $Φ$ when fixing the topological data of the curve $(gf)^{-1}(0)$ and the surface germ $(X,0)$, allowing to address a problem called polar exploration. We also use the inner rates to study the geometry of the Milnor fibers of a non constant holomorphic function $f:(X,0) \longrightarrow (\mathbb{C},0)$. The main result is a formula which involves the inner rates and the polar curve alongside topological invariants of the surface germ $(X,0)$ and the curve $(gf)^{-1}(0)$.