论文标题

DQC $^2 $ O:在未来网络中进行协作优化的分布式量子计算

DQC$^2$O: Distributed Quantum Computing for Collaborative Optimization in Future Networks

论文作者

Ngoenriang, Napat, Xu, Minrui, Kang, Jiawen, Niyato, Dusit, Yu, Han, Xuemin, Shen

论文摘要

有了高速并行处理的优势,量子计算机可以有效地解决未来网络中的大规模复杂优化问题。但是,由于不确定的Qubit保真度和量子通道噪声,分布式量子计算依赖于通过纠缠连接的量子网络面临许多挑战,以跨量子计算机交换信息。在本文中,我们提出了一种自适应分布式量子计算方法,以管理量子计算机和量子通道,以解决将来网络中的优化任务。首先,我们描述了量子计算的基本原理及其在量子网络中的分布式概念。其次,为了解决量子网络对协作优化任务和不稳定性的未来需求的不确定性,我们提出了一种基于随机编程的量子资源分配方案,以最大程度地减少量子资源的消耗。最后,基于提出的方法,我们讨论了未来网络中协作优化的潜在应用,例如智能电网管理,物联网合作和无人机轨迹计划。也可以突出显示的有前途的研究方向,这些方向可以导致未来分布式量子计算框架的设计和实施。

With the advantages of high-speed parallel processing, quantum computers can efficiently solve large-scale complex optimization problems in future networks. However, due to the uncertain qubit fidelity and quantum channel noise, distributed quantum computing which relies on quantum networks connected through entanglement faces a lot of challenges for exchanging information across quantum computers. In this paper, we propose an adaptive distributed quantum computing approach to manage quantum computers and quantum channels for solving optimization tasks in future networks. Firstly, we describe the fundamentals of quantum computing and its distributed concept in quantum networks. Secondly, to address the uncertainty of future demands of collaborative optimization tasks and instability over quantum networks, we propose a quantum resource allocation scheme based on stochastic programming for minimizing quantum resource consumption. Finally, based on the proposed approach, we discuss the potential applications for collaborative optimization in future networks, such as smart grid management, IoT cooperation, and UAV trajectory planning. Promising research directions that can lead to the design and implementation of future distributed quantum computing frameworks are also highlighted.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源