论文标题
探索具有多极扩展的MEG空间分辨率的极限
Exploring the limits of MEG spatial resolution with multipolar expansions
论文作者
论文摘要
基于光学泵送磁力计(OPM)的头皮磁脑摄影(MEG)的出现可能代表人类电生理学领域的步骤变化。与基于超导量子干扰设备的低温MEG相比,头皮MEG承诺要明显更高的空间分辨率成像,但对于如何最佳设计OPM阵列,它也面临许多挑战。在这种情况下,我们试图对MEG空间分辨率进行系统描述,这是传感器数量,传感器与脑距离,传感器类型和信噪比的函数的函数。为此,我们提出了一种基于MEG多极扩展的分析理论,该理论能够以实验输入和仿真的补充,以两个定性截然不同的状态来对MEG空间分辨率的限制进行定量评估。在渐近高密度MEG的制度中,我们提供了数学上严格的描述,以描述磁场平滑度约束如何将空间分辨率分解为缓慢,对数差异。在相反的低密度MEG方向上,传感器的密度将空间分辨率限制为正方形定律的更快增加。这两个方案之间的过渡控制了MEG空间分辨率如何随着传感器接近神经活动的来源而饱和。 MEG空间分辨率的这两种两级模型都集成了已知的观测值(例如,通过增加传感器密度来改善空间分辨率的难度,通过增加传感器密度,通过在头皮上移动传感器带来的增益,或者多组分传感器的实用性)并将其在统一的理论框架下聚集在统一的理论框架下,以彰显其构图的属性属性和揭示了象征性的效率。我们建议该框架可能会找到有用的应用程序来基准基于未来OPM的头皮MEG系统的设计。
The advent of scalp magnetoencephalography (MEG) based on optically pumped magnetometers (OPMs) may represent a step change in the field of human electrophysiology. Compared to cryogenic MEG based on superconducting quantum interference devices, scalp MEG promises significantly higher spatial resolution imaging but it also comes with numerous challenges regarding how to optimally design OPM arrays. In this context, we sought to provide a systematic description of MEG spatial resolution as a function of the number of sensors, sensor-to-brain distance, sensor type, and signal-to-noise ratio. To that aim, we present an analytical theory based on MEG multipolar expansions that enables, once supplemented with experimental input and simulations, quantitative assessment of the limits of MEG spatial resolution in terms of two qualitatively distinct regimes. In the regime of asymptotically high-density MEG, we provide a mathematically rigorous description of how magnetic field smoothness constraints spatial resolution to a slow, logarithmic divergence. In the opposite regime of low-density MEG, it is sensor density that constraints spatial resolution to a faster increase following a square-root law. The transition between these two regimes controls how MEG spatial resolution saturates as sensors approach sources of neural activity. This two-regime model of MEG spatial resolution integrates known observations (e.g., the difficulty of improving spatial resolution by increasing sensor density, the gain brought by moving sensors on scalp, or the usefulness of multi-component sensors) and gathers them under a unifying theoretical framework that highlights the underlying physics and reveals properties inaccessible to simulations. We propose that this framework may find useful applications to benchmark the design of future OPM-based scalp MEG systems.