论文标题

使用面板数据测试有限混合物中的组件数量正常回归模型

Testing the Number of Components in Finite Mixture Normal Regression Model with Panel Data

论文作者

Hao, Yu, Kasahara, Hiroyuki

论文摘要

本文通过扩展Chen and Li(2009a)和Kasahara和Shimotsu(2015)与PateLel Data的替代方案,开发了基于M0组件模型的零假设的可能性测试。我们表明,与横截面法线混合物不同,面板正常混合物中方差参数的密度函数的一阶导数与平均参数的二阶导数无关。另一方面,像横截面正常混合物一样,面板正常混合物的可能性比测试统计量是无限的。我们考虑惩罚的最大似然估计器来处理无限制,在此我们通过计算实验获得数据驱动的惩罚函数。我们通过扩展对数 - 样式函数的渐近样可能比率测试(PLRT)和EM测试统计量的渐近分布,用于重新聚集参数五次。模拟实验表明拟议的EM检验的良好有限样本性能。我们应用EM测试来估计Kasahara等人研究的有限混合物Cobb-Douglas生产功能模型的生产技术类型的数量。 (2022)使用了日本和智利制造公司的面板数据。我们发现中间商品产出弹性异质性的证据,这表明生产功能在其Hicks中立生产率方面以外的公司之间都是异质的。

This paper develops the likelihood ratio-based test of the null hypothesis of a M0-component model against an alternative of (M0 + 1)-component model in the normal mixture panel regression by extending the Expectation-Maximization (EM) test of Chen and Li (2009a) and Kasahara and Shimotsu (2015) to the case of panel data. We show that, unlike the cross-sectional normal mixture, the first-order derivative of the density function for the variance parameter in the panel normal mixture is linearly independent of its second-order derivatives for the mean parameter. On the other hand, like the cross-sectional normal mixture, the likelihood ratio test statistic of the panel normal mixture is unbounded. We consider the Penalized Maximum Likelihood Estimator to deal with the unboundedness, where we obtain the data-driven penalty function via computational experiments. We derive the asymptotic distribution of the Penalized Likelihood Ratio Test (PLRT) and EM test statistics by expanding the log-likelihood function up to five times for the reparameterized parameters. The simulation experiment indicates good finite sample performance of the proposed EM test. We apply our EM test to estimate the number of production technology types for the finite mixture Cobb-Douglas production function model studied by Kasahara et al. (2022) used the panel data of the Japanese and Chilean manufacturing firms. We find the evidence of heterogeneity in elasticities of output for intermediate goods, suggesting that production function is heterogeneous across firms beyond their Hicks-neutral productivity terms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源