论文标题

智能能源计量设备的网络弹性隐私保护和安全计费方法

Cyber-Resilient Privacy Preservation and Secure Billing Approach for Smart Energy Metering Devices

论文作者

M, Venkatesh Kumar

论文摘要

大多数智能应用程序,例如智能能源计量设备,都需要强大的隐私保护以增强数据隐私。但是,很难保护智能设备数据的隐私,尤其是在客户端。这主要是因为帐单付款是由部署在客户端方面的服务器计算的,并且要防止客户信息泄漏给未经授权的用户非常具有挑战性。各种研究人员讨论了这个问题,并提出了不同的隐私保护技术。传统技术遭受客户端高度计算和通信超负荷的问题。此外,由于计算复杂性及其无法处理大规模数据的安全性,这些技术的性能会恶化。由于这些限制,攻击者很容易引入对服务器上的恶意攻击,对数据安全构成了重大威胁。在这种情况下,该建议旨在使用深度学习技术设计新颖的隐私保护和安全计费框架,以确保智能能源计量设备中的数据安全性。这项研究旨在克服现有技术的局限性,以实现智能设备中强大的隐私保护并提高这些设备的网络弹性。

Most of the smart applications, such as smart energy metering devices, demand strong privacy preservation to strengthen data privacy. However, it is difficult to protect the privacy of the smart device data, especially on the client side. It is mainly because payment for billing is computed by the server deployed at the client's side, and it is highly challenging to prevent the leakage of client's information to unauthorised users. Various researchers have discussed this problem and have proposed different privacy preservation techniques. Conventional techniques suffer from the problem of high computational and communication overload on the client side. In addition, the performance of these techniques deteriorates due to computational complexity and their inability to handle the security of large-scale data. Due to these limitations, it becomes easy for the attackers to introduce malicious attacks on the server, posing a significant threat to data security. In this context, this proposal intends to design novel privacy preservation and secure billing framework using deep learning techniques to ensure data security in smart energy metering devices. This research aims to overcome the limitations of the existing techniques to achieve robust privacy preservation in smart devices and increase the cyber resilience of these devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源