论文标题

平面图的奇数颜色

Odd-Sum Colorings of Planar Graphs

论文作者

Cranston, Daniel W.

论文摘要

图$ g $的a \ emph {coloring}是地图$ f:v(g)\ to \ mathbb {z}^+$,以至于所有$ vw \ in E(g)$的$ f(v)\ ne f(w)$。如果$ \ sum_ {w \ in n [v]} f(w)$是奇数,则着色$ f $是\ emph {odd-sum}着色,对于每个顶点$ v \ in v(g)$。图$ g $的\ emph {od-sum色度},表示为$χ_{os}(g)$,是$ g $的奇数颜色中使用的最小颜色数(即范围的最小尺寸)。 Caro,Petruševski和škrekovski还表明,除其他结果外,$χ_{OS}(g)$对于每个有限图$ G $的定义很好,实际上,实际上,$χ_{OS}(os}(g)(g)\ le2χ(g)$。因此,每个平面图$ g $(按4颜色定理),$χ_{os}(g)\ le 8 $,$χ_{os}(g)(g)\ le 6 $对于每个无三角形平面图$ g $(由grötzschsch的theorem)和$χ_{os}(g)(g)(g)\ le 4 $ 4 $ 4 $ 4 $ 4 $。 Caro等。问,对于每一个偶数$δ\ ge 4 $,是否存在$g_δ$,以便如果$ g $是平面,最高度$δ$和girth至少$g_Δ$,则$χ_{os}(os}(g)\ le 5 $。他们还问,对于每一个均匀的$δ\ ge 4 $,是否存在$g_Δ$,以便如果$ g $是平面和两部分,具有最高度$δ$和girth至少$g_δ$,则$χ_{os}(os}(g)(g)\ le 3 $。我们对两个问题负面回答。我们还驳斥了他们做出的猜想,解决了他们提出的另一个问题,并在另一个问题上取得了进展。

A \emph{coloring} of a graph $G$ is a map $f:V(G)\to \mathbb{Z}^+$ such that $f(v)\ne f(w)$ for all $vw\in E(G)$. A coloring $f$ is an \emph{odd-sum} coloring if $\sum_{w\in N[v]}f(w)$ is odd, for each vertex $v\in V(G)$. The \emph{odd-sum chromatic number} of a graph $G$, denoted $χ_{os}(G)$, is the minimum number of colors used (that is, the minimum size of the range) in an odd-sum coloring of $G$. Caro, Petruševski, and Škrekovski showed, among other results, that $χ_{os}(G)$ is well-defined for every finite graph $G$ and, in fact, $χ_{os}(G)\le 2χ(G)$. Thus, $χ_{os}(G)\le 8$ for every planar graph $G$ (by the 4 Color Theorem), $χ_{os}(G)\le 6$ for every triangle-free planar graph $G$ (by Grötzsch's Theorem), and $χ_{os}(G)\le 4$ for every bipartite graph. Caro et al. asked, for every even $Δ\ge 4$, whether there exists $g_Δ$ such that if $G$ is planar with maximum degree $Δ$ and girth at least $g_Δ$ then $χ_{os}(G)\le 5$. They also asked, for every even $Δ\ge 4$, whether there exists $g_Δ$ such that if $G$ is planar and bipartite with maximum degree $Δ$ and girth at least $g_Δ$ then $χ_{os}(G)\le 3$. We answer both questions negatively. We also refute a conjecture they made, resolve one further problem they posed, and make progress on another.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源