论文标题
一种real2sim2Real方法,用于与神经表面重建的稳健物体抓住
A Real2Sim2Real Method for Robust Object Grasping with Neural Surface Reconstruction
论文作者
论文摘要
最新的基于3D的操纵方法要么使用3D神经网络直接预测Grasp姿势,要么使用从形状数据库中检索的相似对象求解抓姿势。但是,前者在使用新机器人武器或看不见的物体进行测试时面临普遍性挑战。后者假设数据库中存在类似的对象。我们假设最近的3D建模方法为构建评估场景的数字复制品提供了一种途径,该副本提供了物理模拟并支持强大的操纵算法学习。我们建议使用最先进的神经表面重建方法(Real2SIM步骤)从现实世界点云中重建高质量的网格。由于大多数模拟器都采用网格进行快速模拟,因此重建的网格可以在不努力的情况下掌握姿势标签。生成的标签可以训练在真实评估场景(SIM2REAL步骤)中执行鲁棒的网络。在合成和真实实验中,我们表明,REAL2SIM2REAL管道的性能优于基线抓地力网络,该网络训练有大型数据集和具有基于检索的重建的Grasp Sampling方法。 Real2sim2Real管道的好处来自1)分离场景建模并将采样掌握到子问题中,以及2)可以使用最近的3D学习算法和基于网格的物理仿真技术来用足够高质量的高质量来解决这两个子问题。
Recent 3D-based manipulation methods either directly predict the grasp pose using 3D neural networks, or solve the grasp pose using similar objects retrieved from shape databases. However, the former faces generalizability challenges when testing with new robot arms or unseen objects; and the latter assumes that similar objects exist in the databases. We hypothesize that recent 3D modeling methods provides a path towards building digital replica of the evaluation scene that affords physical simulation and supports robust manipulation algorithm learning. We propose to reconstruct high-quality meshes from real-world point clouds using state-of-the-art neural surface reconstruction method (the Real2Sim step). Because most simulators take meshes for fast simulation, the reconstructed meshes enable grasp pose labels generation without human efforts. The generated labels can train grasp network that performs robustly in the real evaluation scene (the Sim2Real step). In synthetic and real experiments, we show that the Real2Sim2Real pipeline performs better than baseline grasp networks trained with a large dataset and a grasp sampling method with retrieval-based reconstruction. The benefit of the Real2Sim2Real pipeline comes from 1) decoupling scene modeling and grasp sampling into sub-problems, and 2) both sub-problems can be solved with sufficiently high quality using recent 3D learning algorithms and mesh-based physical simulation techniques.