论文标题
Microlal Navier-Stokes方程的Euler IMEX-SAV方案的无条件稳定性和错误分析
Unconditional stability and error analysis of an Euler IMEX-SAV scheme for the micropolar Navier-Stokes equations
论文作者
论文摘要
在本文中,我们考虑了用于求解微极纳维尔 - 斯托克斯(MNS)方程的数值近似值,这些方程将Navier-Stokes方程和角动量方程式耦合在一起。通过结合对流术语的标量辅助变量(SAV)方法,以及对耦合术语的一些微妙的隐式解释(IMEX)处理,我们提出了该系统的脱钩,线性和无条件能量稳定的方案。我们进一步得出了二维速度,压力和角速度速度的严格误差估计值,而时间步长则没有任何条件。提出了数值示例以验证理论发现并显示该方案的性能。
In this paper, we consider numerical approximations for solving the micropolar Navier-Stokes (MNS) equations, that couples the Navier-Stokes equations and the angular momentum equation together. By combining the scalar auxiliary variable (SAV) approach for the convective terms and some subtle implicit-explicit (IMEX) treatments for the coupling terms, we propose a decoupled, linear and unconditionally energy stable scheme for this system. We further derive rigorous error estimates for the velocity, pressure and angular velocity in two dimensions without any condition on the time step. Numerical examples are presented to verify the theoretical findings and show the performances of the scheme.