论文标题
Mechretro是一个化学机制驱动的图形学习框架
MechRetro is a chemical-mechanism-driven graph learning framework for interpretable retrosynthesis prediction and pathway planning
论文作者
论文摘要
利用人工智能进行自动返回,可以加快数字实验室中的有机途径计划。但是,现有的深度学习方法是无法解释的,例如“黑匣子”,几乎没有见解,特别是限制了它们在实际逆转录合成场景中的应用。在这里,我们提出了Mechretro,这是一种用于化学机械驱动的图形学习框架,用于可解释的后循环预测和途径计划,该框架学习了几种通过详尽的自适应关节学习来模拟反向反应的几种反反应。通过将化学知识作为先验信息整合,我们设计了一种新型的图形变压器结构,以适应性地学习歧视性和化学有意义的分子表示,突出了分子特征表示学习的强大能力。我们证明,在大规模基准数据集上,Mechretro的表现优于反折叠预测的最先进方法。将机电延伸到多步返回合成分析,我们通过可解释的推理机制确定有效的合成途径,从而更好地理解了知识渊博的合成化学家的领域。我们还展示了Mechretro发现了一种新颖的原子醇途径,以及用于不确定性评估的能量评分,从而扩大了对实际场景的适用性。总体而言,我们希望Mechretro为药物发现中的高通量自动化有机合成提供有意义的见解。
Leveraging artificial intelligence for automatic retrosynthesis speeds up organic pathway planning in digital laboratories. However, existing deep learning approaches are unexplainable, like "black box" with few insights, notably limiting their applications in real retrosynthesis scenarios. Here, we propose MechRetro, a chemical-mechanism-driven graph learning framework for interpretable retrosynthetic prediction and pathway planning, which learns several retrosynthetic actions to simulate a reverse reaction via elaborate self-adaptive joint learning. By integrating chemical knowledge as prior information, we design a novel Graph Transformer architecture to adaptively learn discriminative and chemically meaningful molecule representations, highlighting the strong capacity in molecule feature representation learning. We demonstrate that MechRetro outperforms the state-of-the-art approaches for retrosynthetic prediction with a large margin on large-scale benchmark datasets. Extending MechRetro to the multi-step retrosynthesis analysis, we identify efficient synthetic routes via an interpretable reasoning mechanism, leading to a better understanding in the realm of knowledgeable synthetic chemists. We also showcase that MechRetro discovers a novel pathway for protokylol, along with energy scores for uncertainty assessment, broadening the applicability for practical scenarios. Overall, we expect MechRetro to provide meaningful insights for high-throughput automated organic synthesis in drug discovery.