论文标题
累积前景理论下的决策:乘数的交替方向方法
Decision Making under Cumulative Prospect Theory: An Alternating Direction Method of Multipliers
论文作者
论文摘要
本文提出了一种新的数值方法,用于解决累积前景理论(CPT)下的决策问题,该方法是可以最大程度地提高实用性,但假设只有有限的相关分布实现。现有的CPT优化方法依赖于可能在实践中可能不存在的特定假设。为了克服这一限制,我们提出了第一种数值方法,该方法具有使用乘数的交替方向方法(ADMM)来求解CPT优化的理论保证。它的子问题之一涉及对CPT实用程序的优化,但受到链限制的约束,这提出了重大挑战。为了解决这个问题,我们开发了解决此子问题的两种方法。第一种方法使用动态编程,而第二种方法是合并CPT实用程序函数的池化 - 变雅 - 侵入算法算法的修改版本。此外,我们证明了我们提出的ADMM方法和两个子问题解决方法的理论融合。最后,我们进行数值实验来验证我们提出的方法,并证明CPT参数如何使用现实世界数据影响投资者的行为。
This paper proposes a novel numerical method for solving the problem of decision making under cumulative prospect theory (CPT), where the goal is to maximize utility subject to practical constraints, assuming only finite realizations of the associated distribution are available. Existing methods for CPT optimization rely on particular assumptions that may not hold in practice. To overcome this limitation, we present the first numerical method with a theoretical guarantee for solving CPT optimization using an alternating direction method of multipliers (ADMM). One of its subproblems involves optimization with the CPT utility subject to a chain constraint, which presents a significant challenge. To address this, we develop two methods for solving this subproblem. The first method uses dynamic programming, while the second method is a modified version of the pooling-adjacent-violators algorithm that incorporates the CPT utility function. Moreover, we prove the theoretical convergence of our proposed ADMM method and the two subproblem-solving methods. Finally, we conduct numerical experiments to validate our proposed approach and demonstrate how CPT's parameters influence investor behavior using real-world data.