论文标题
多层计算的数字双胞胎授权网络计划
Digital Twin-Empowered Network Planning for Multi-Tier Computing
论文作者
论文摘要
在本文中,我们设计了一种资源管理计划来支持状态应用程序,该应用程序将在6G网络中普遍存在。与无状态应用程序不同,状态应用程序需要上下文数据,同时从用户终端执行计算任务(UTS)。我们使用在核心网络,网关和基站部署的服务器的多层计算范式来支持状态应用程序,我们旨在通过共同最大程度地减少重新配置资源保留的计算,存储和通信资源的使用来优化长期资源保留。不同资源之间的耦合以及UT移动性的影响在资源管理中带来了挑战。为了应对挑战,我们开发了具有两个要素的数字双胞胎(DT)授权网络计划,即多资源保留和资源保留重新配置。首先,DTS设计用于收集UT状态数据,该数据根据其移动性模式分组。其次,提出了一种算法来自定义不同群体的资源保留,以满足其不同的资源需求。最后,开发了一种基于元学习的方法来重新配置资源保留,以平衡网络资源使用和重新配置成本。仿真结果表明,提议的DT授权网络计划通过使用更少的资源和降低重新配置成本来优于基准框架。
In this paper, we design a resource management scheme to support stateful applications, which will be prevalent in 6G networks. Different from stateless applications, stateful applications require context data while executing computing tasks from user terminals (UTs). Using a multi-tier computing paradigm with servers deployed at the core network, gateways, and base stations to support stateful applications, we aim to optimize long-term resource reservation by jointly minimizing the usage of computing, storage, and communication resources and the cost from reconfiguring resource reservation. The coupling among different resources and the impact of UT mobility create challenges in resource management. To address the challenges, we develop digital twin (DT) empowered network planning with two elements, i.e., multi-resource reservation and resource reservation reconfiguration. First, DTs are designed for collecting UT status data, based on which UTs are grouped according to their mobility patterns. Second, an algorithm is proposed to customize resource reservation for different groups to satisfy their different resource demands. Last, a Meta-learning-based approach is developed to reconfigure resource reservation for balancing the network resource usage and the reconfiguration cost. Simulation results demonstrate that the proposed DT-empowered network planning outperforms benchmark frameworks by using less resources and incurring lower reconfiguration costs.