论文标题

Tartancalib:使用Apriltags的自适应子像素改进的迭代广角镜头校准

TartanCalib: Iterative Wide-Angle Lens Calibration using Adaptive SubPixel Refinement of AprilTags

论文作者

Duisterhof, Bardienus P, Hu, Yaoyu, Teng, Si Heng, Kaess, Michael, Scherer, Sebastian

论文摘要

广角摄像头是移动机器人的独特位置,凭借其在小型,轻巧且具有成本效益的外形方面提供的丰富信息。对内在和外部功能的准确校准是使用广角镜的边缘进行深度感知和探测法的关键先决条件。用当前最新技术校准广角透镜会由于边缘极端变形而产生较差的结果,因为大多数算法都假定距离较低到中畸变更接近针孔投影的镜头。在这项工作中,我们介绍了准确的广角校准的方法。我们的管道生成了一个中间模型,并利用它来迭代改进功能检测,并最终改善相机参数。我们测试了三个关键方法来利用中间相机模型:(1)将图像固定到虚拟针孔摄像机中,(2)将目标重新投影到图像框架中,以及(3)自适应子像素细化。结合自适应子像素的细化和特征再卷预测可显着提高再投影误差高达26.59%,可帮助我们检测到多达42.01%的功能,并提高在密集深度映射的下游任务中的性能。最后,Tartancalib是开源的,并将其实现为易于使用的校准工具箱。我们还提供了其他最先进的作品的翻译层,该工程允许使用数千个参数回归通用模型或使用更健壮的求解器。为此,tartancalib是广角校准的首选工具。项目网站和代码:http://tartancalib.com。

Wide-angle cameras are uniquely positioned for mobile robots, by virtue of the rich information they provide in a small, light, and cost-effective form factor. An accurate calibration of the intrinsics and extrinsics is a critical pre-requisite for using the edge of a wide-angle lens for depth perception and odometry. Calibrating wide-angle lenses with current state-of-the-art techniques yields poor results due to extreme distortion at the edge, as most algorithms assume a lens with low to medium distortion closer to a pinhole projection. In this work we present our methodology for accurate wide-angle calibration. Our pipeline generates an intermediate model, and leverages it to iteratively improve feature detection and eventually the camera parameters. We test three key methods to utilize intermediate camera models: (1) undistorting the image into virtual pinhole cameras, (2) reprojecting the target into the image frame, and (3) adaptive subpixel refinement. Combining adaptive subpixel refinement and feature reprojection significantly improves reprojection errors by up to 26.59 %, helps us detect up to 42.01 % more features, and improves performance in the downstream task of dense depth mapping. Finally, TartanCalib is open-source and implemented into an easy-to-use calibration toolbox. We also provide a translation layer with other state-of-the-art works, which allows for regressing generic models with thousands of parameters or using a more robust solver. To this end, TartanCalib is the tool of choice for wide-angle calibration. Project website and code: http://tartancalib.com.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源