论文标题

实例分段中未知图像失真的域适应

Domain Adaptation for Unknown Image Distortions in Instance Segmentation

论文作者

Gruber, Maximiliane, Brand, Fabian, Mosebach, Alina, Seiler, Jürgen, Kaup, André

论文摘要

机器视觉的数据驱动技术在很大程度上取决于训练数据,以足够类似于测试和应用过程中发生的数据。但是,实际上,未知的失真会导致训练和测试数据之间的域间隙,从而阻碍机器视觉系统的性能。通过我们提出的方法,可以通过对未知失真的原始映射函数的未配对学习来封闭该域间隙。然后,该学到的映射功能可用于模拟训练数据中未知的失真。使用固定的设置,我们的方法独立于对失真的先验知识。在这项工作中,我们表明我们可以有效地学习以任意优势的未知扭曲。在自主驾驶场景中应用我们的方法对实例细分时,我们取得的结果与具有失真知识的Oracle相当。平均平均精度(地图)的平均增益最高为0.19。

Data-driven techniques for machine vision heavily depend on the training data to sufficiently resemble the data occurring during test and application. However, in practice unknown distortion can lead to a domain gap between training and test data, impeding the performance of a machine vision system. With our proposed approach this domain gap can be closed by unpaired learning of the pristine-to-distortion mapping function of the unknown distortion. This learned mapping function may then be used to emulate the unknown distortion in the training data. Employing a fixed setup, our approach is independent from prior knowledge of the distortion. Within this work, we show that we can effectively learn unknown distortions at arbitrary strengths. When applying our approach to instance segmentation in an autonomous driving scenario, we achieve results comparable to an oracle with knowledge of the distortion. An average gain in mean Average Precision (mAP) of up to 0.19 can be achieved.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源