论文标题

神经信息:隐式神经表示的可区分网格

NeuralMeshing: Differentiable Meshing of Implicit Neural Representations

论文作者

Vetsch, Mathias, Lombardi, Sandro, Pollefeys, Marc, Oswald, Martin R.

论文摘要

从点云中产生的三角形网格,即网格划分,是计算机图形和计算机视觉中的核心任务。传统技术直接使用局部决策启发式方法直接构建表面网格,而基于神经隐式表示的一些最新方法试图在此网格划分过程中利用数据驱动的方法。但是,为未知拓扑和大小的三角形网格定义可学习的表示是具有挑战性的,因此,神经隐式表示依赖于非差异性后处理来提取最终的三角形网格。在这项工作中,我们提出了一种新型的可区分网格算法,用于从神经隐式表示中提取表面网格。我们的方法以迭代方式产生网格,这使其适用于各种尺度的形状并适应形状的局部曲率。此外,与现有方法相比,我们的方法还会产生带有常规镶嵌模式的网格和较少的三角形面孔。实验证明了可比的重建性能和基准比基线的良好网格特性。

The generation of triangle meshes from point clouds, i.e. meshing, is a core task in computer graphics and computer vision. Traditional techniques directly construct a surface mesh using local decision heuristics, while some recent methods based on neural implicit representations try to leverage data-driven approaches for this meshing process. However, it is challenging to define a learnable representation for triangle meshes of unknown topology and size and for this reason, neural implicit representations rely on non-differentiable post-processing in order to extract the final triangle mesh. In this work, we propose a novel differentiable meshing algorithm for extracting surface meshes from neural implicit representations. Our method produces the mesh in an iterative fashion, which makes it applicable to shapes of various scales and adaptive to the local curvature of the shape. Furthermore, our method produces meshes with regular tessellation patterns and fewer triangle faces compared to existing methods. Experiments demonstrate the comparable reconstruction performance and favorable mesh properties over baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源