论文标题

掺杂的自旋链中的粒子动物园:介子和镁质的相关状态

Particle zoo in a doped spin chain: Correlated states of mesons and magnons

论文作者

Čubela, Petar, Bohrdt, Annabelle, Greiner, Markus, Grusdt, Fabian

论文摘要

人们普遍接受的观点是,掺杂的抗铁磁体(AFMS)中自旋和电荷的相互作用会导致高温超导体的丰富物理学。然而,目前尚不清楚低能量的自由度和相应的田野理论从微观模型中出现了,包括$ t-j $和哈伯德·哈密顿人。一种有希望的观点包括电荷载体在中间尺度上具有丰富的内部parton结构,但是新兴的部分与周围AFM的集体木弹性激发的相互作用仍未得到探索。在这里,我们在交错的磁场中研究了一个掺杂的一维自旋链,并证明它支持各种长寿命激发的动物园。这些包括少量;中间的纺纱片和圆锥形伴侣,以及它们的RO振动激发;以及介子和镁质的四方结合状态。我们使用DMRG模拟在各种光谱中识别这些类型的准颗粒。此外,我们引入了一个强耦合理论,描述了介体对集体镁激发的二极化敷料和分子结合。有效的理论可以通过为二极化问题开发的标准工具来解决,并可以扩展到将来研究二维掺杂AFM的类似物理学。在实验上,可以直接在量子气体显微镜中直接实现交错场中的掺杂的自旋链。

It is a widely accepted view that the interplay of spin- and charge-degrees of freedom in doped antiferromagnets (AFMs) gives rise to the rich physics of high-temperature superconductors. Nevertheless, it remains unclear how effective low-energy degrees of freedom and the corresponding field theories emerge from microscopic models, including the $t-J$ and Hubbard Hamiltonians. A promising view comprises that the charge carriers have a rich internal parton structure on intermediate scales, but the interplay of the emergent partons with collective magnon excitations of the surrounding AFM remains unexplored. Here we study a doped one-dimensional spin chain in a staggered magnetic field and demonstrate that it supports a zoo of various long-lived excitations. These include magnons; mesonic pairs of spinons and chargons, along with their ro-vibrational excitations; and tetra-parton bound states of mesons and magnons. We identify these types of quasiparticles in various spectra using DMRG simulations. Moreover, we introduce a strong-coupling theory describing the polaronic dressing and molecular binding of mesons to collective magnon excitations. The effective theory can be solved by standard tools developed for polaronic problems, and can be extended to study similar physics in two-dimensional doped AFMs in the future. Experimentally, the doped spin-chain in a staggered field can be directly realized in quantum gas microscopes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源