论文标题

在充满挑战的场景中

Spatial-Temporal-Aware Safe Multi-Agent Reinforcement Learning of Connected Autonomous Vehicles in Challenging Scenarios

论文作者

Zhang, Zhili, Han, Songyang, Wang, Jiangwei, Miao, Fei

论文摘要

通信技术可以在连接和自动驾驶汽车(CAVS)之间进行协调。但是,尚不清楚如何利用共享信息来提高动态和复杂驾驶方案中CAV系统的安全性和效率。在这项工作中,我们提出了一个有限的多代理增强学习(MARL)的框架,并在挑战驾驶场景中为骑士提供了平行的安全罩,其中包括未连接的危险车辆。拟议的MARL的协调机制包括信息共享和合作政策学习,图形卷积网络(GCN)转换器作为一种时空编码器,可以增强代理的环境意识。具有控制屏障功能(CBF)的安全屏蔽模块基于控制屏障的安全检查可保护代理免于采取不安全的动作。我们设计了一个受约束的多代理优势参与者批评(CMAA2C​​)算法,以训练CAVS的安全且合作的政策。通过在CARLA模拟器中部署的实验,我们验证了安全检查,时空编码器的性能以及我们方法中通过比较实验在几种挑战性场景中使用无连接危险工具进行的比较实验设计的协调机制。结果表明,我们提出的方法可显着提高系统的安全性和挑战性情况的效率。

Communication technologies enable coordination among connected and autonomous vehicles (CAVs). However, it remains unclear how to utilize shared information to improve the safety and efficiency of the CAV system in dynamic and complicated driving scenarios. In this work, we propose a framework of constrained multi-agent reinforcement learning (MARL) with a parallel Safety Shield for CAVs in challenging driving scenarios that includes unconnected hazard vehicles. The coordination mechanisms of the proposed MARL include information sharing and cooperative policy learning, with Graph Convolutional Network (GCN)-Transformer as a spatial-temporal encoder that enhances the agent's environment awareness. The Safety Shield module with Control Barrier Functions (CBF)-based safety checking protects the agents from taking unsafe actions. We design a constrained multi-agent advantage actor-critic (CMAA2C) algorithm to train safe and cooperative policies for CAVs. With the experiment deployed in the CARLA simulator, we verify the performance of the safety checking, spatial-temporal encoder, and coordination mechanisms designed in our method by comparative experiments in several challenging scenarios with unconnected hazard vehicles. Results show that our proposed methodology significantly increases system safety and efficiency in challenging scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源