论文标题

减少基础合奏Kalman方法

A Reduced Basis Ensemble Kalman Method

论文作者

Silva, Francesco A. B., Pagliantini, Cecilia, Grepl, Martin, Veroy, Karen

论文摘要

在重现参数依赖分布式系统的状态动力学的过程中,可以将物理测量数据的数据纳入数学模型,以减少参数不确定性,从而改善状态预测。这样的数据同化过程必须处理由实验噪声以及模型不准确和不确定性引起的数据和模型失误。在这项工作中,我们关注集合卡尔曼方法(ENKM),这是一种基于粒子的迭代正则化方法,旨在\ textit {a posteriori}时间序列分析。该方法是无梯度的,像集成Kalman滤波器(ENKF)一样,依赖于参数或粒子集合的样本来识别更好地重现物理观测值的状态,同时保留最佳知识模型所描述的系统物理。我们考虑通过参数化抛物线偏微分方程描述的系统,并采用模型订单降低(MOR)技术来生成具有不确定参数的不同精度的替代模型。它们与ENKM结合使用涉及引入模型偏差,该模型偏差构成了系统错误的新来源。为了减轻其影响,提出了算法调整,以提出对数据偏差的事先估算。在不同条件下测试所得的RB-ENKM,包括不同的集合大小和实验噪声水平的增加。将结果与标准ENKF和未经调整算法获得的结果进行比较。

In the process of reproducing the state dynamics of parameter dependent distributed systems, data from physical measurements can be incorporated into the mathematical model to reduce the parameter uncertainty and, consequently, improve the state prediction. Such a Data Assimilation process must deal with the data and model misfit arising from experimental noise as well as model inaccuracies and uncertainties. In this work, we focus on the ensemble Kalman method (EnKM), a particle-based iterative regularization method designed for \textit{a posteriori} analysis of time series. The method is gradient free and, like the ensemble Kalman filter (EnKF), relies on a sample of parameters or particle ensemble to identify the state that better reproduces the physical observations, while preserving the physics of the system as described by the best knowledge model. We consider systems described by parameterized parabolic partial differential equations and employ model order reduction (MOR) techniques to generate surrogate models of different accuracy with uncertain parameters. Their use in combination with the EnKM involves the introduction of the model bias which constitutes a new source of systematic error. To mitigate its impact, an algorithm adjustment is proposed accounting for a prior estimation of the bias in the data. The resulting RB-EnKM is tested in different conditions, including different ensemble sizes and increasing levels of experimental noise. The results are compared to those obtained with the standard EnKF and with the unadjusted algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源