论文标题

隐藏在深层概率模型中的图像

Hiding Images in Deep Probabilistic Models

论文作者

Chen, Haoyu, Song, Linqi, Qian, Zhenxing, Zhang, Xinpeng, Ma, Kede

论文摘要

近年来,使用深神经网络(DNN)的数据隐藏了令人印象深刻的成功。一项盛行的方案是训练自动编码器,由编码网络组成,以嵌入(或转换)秘密消息(或进入)载体中,以及一个解码网络以提取隐藏的消息。该计划可能会遭受有关实用性,安全性和嵌入能力的几个限制。在这项工作中,我们描述了一个不同的计算框架,以隐藏图像在深度概率模型中。具体而言,我们使用DNN对封面图像的概率密度进行建模,并将秘密图像隐藏在学习分布的一个特定位置。作为实例化,我们采用了一个singan,一种生成对抗网络(GAN)的金字塔,以了解一个封面图像的贴片分布。我们通过将确定性映射从固定的噪声图(由嵌入密钥生成)拟合到斑块分发学习过程中,从而隐藏了秘密图像。 Stego Singan表现为原始的Singan,公开传达;只有带有嵌入密钥的接收器才能提取秘密图像。我们在提取准确性和模型安全性方面证明了我们的新丹方法的可行性。此外,我们在为不同的接收器隐藏多个图像并混淆秘密图像方面显示了所提出的方法的灵活性。

Data hiding with deep neural networks (DNNs) has experienced impressive successes in recent years. A prevailing scheme is to train an autoencoder, consisting of an encoding network to embed (or transform) secret messages in (or into) a carrier, and a decoding network to extract the hidden messages. This scheme may suffer from several limitations regarding practicability, security, and embedding capacity. In this work, we describe a different computational framework to hide images in deep probabilistic models. Specifically, we use a DNN to model the probability density of cover images, and hide a secret image in one particular location of the learned distribution. As an instantiation, we adopt a SinGAN, a pyramid of generative adversarial networks (GANs), to learn the patch distribution of one cover image. We hide the secret image by fitting a deterministic mapping from a fixed set of noise maps (generated by an embedding key) to the secret image during patch distribution learning. The stego SinGAN, behaving as the original SinGAN, is publicly communicated; only the receiver with the embedding key is able to extract the secret image. We demonstrate the feasibility of our SinGAN approach in terms of extraction accuracy and model security. Moreover, we show the flexibility of the proposed method in terms of hiding multiple images for different receivers and obfuscating the secret image.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源