论文标题
贝叶斯优化二维沉淀硬化晶体的离散位错可塑性
Bayesian optimization of discrete dislocation plasticity of two-dimensional precipitation hardened crystals
论文作者
论文摘要
发现材料的微观结构与机械性能之间的关系是材料科学的关键目标。在这里,我们概述了一种利用贝叶斯优化的策略,以有效地搜索微观结构的多维空间,此处通过在简单的二维离散分离动力学模型中的沉淀物的尺寸分布(固定杂质或夹杂物作为脱位运动障碍物)的尺寸分布(固定杂质或夹杂物作为脱位运动的障碍)。目的是设计一个优化给定机械性能的微结构,例如,最大化给定菌株的剪切应力的预期值。找到分布的最佳离散形状的问题涉及规范约束,我们发现应以特定方式进行抽样解决方案的空间,以避免收敛问题。为此,我们提出了一种一般的数学方法,该方法可用于在执行欧几里得规范约束的同时随机生成试验解决方案。都考虑了平等和不平等约束。然后,可以使用一种简单的技术来转换欧几里得和其他lebesgue $ p $ - 纳米(特别是1核)的约束表示。考虑到不同的位错限体的相互作用势,我们证明了算法与最佳溶液的收敛性,并讨论了其可能扩展到更复杂和现实的三维位错系统的情况,在其中还可以考虑进行沉淀形状的优化。
Discovering relationships between materials' microstructures and mechanical properties is a key goal of materials science. Here, we outline a strategy exploiting Bayesian optimization to efficiently search the multidimensional space of microstructures, defined here by the size distribution of precipitates (fixed impurities or inclusions acting as obstacles for dislocation motion) within a simple two-dimensional discrete dislocation dynamics model. The aim is to design a microstructure optimizing a given mechanical property, e.g., maximizing the expected value of shear stress for a given strain. The problem of finding the optimal discretized shape for a distribution involves a norm constraint, and we find that sampling the space of possible solutions should be done in a specific way in order to avoid convergence problems. To this end, we propose a general mathematical approach that can be used to generate trial solutions uniformly at random while enforcing an Euclidean norm constraint. Both equality and inequality constraints are considered. A simple technique can then be used to convert between Euclidean and other Lebesgue $p$-norm (the 1-norm in particular) constrained representations. Considering different dislocation-precipitate interaction potentials, we demonstrate the convergence of the algorithm to the optimal solution and discuss its possible extensions to the more complex and realistic case of three-dimensional dislocation systems where also the optimization of precipitate shapes could be considered.