论文标题

通过相关的加性扰动,通过隐私保护的无线联合学习和隐私保护

Over-the-Air Federated Learning with Privacy Protection via Correlated Additive Perturbations

论文作者

Liao, Jialing, Chen, Zheng, Larsson, Erik G.

论文摘要

在本文中,我们考虑了无线联合学习(FL)的隐私方面,并通过直播(OTA)将梯度更新从多个用户/代理传输到边缘服务器。通过利用多个访问渠道的波形叠加属性,OTA FL使用户可以通过线性处理技术同时传输其更新,从而提高了资源效率。但是,此设置容易受到隐私泄漏的影响,因为对手节点可以直接听到未编码的消息。传统的基于扰动的方法提供了隐私保护,同时由于信噪比降低而牺牲了训练准确性。在这项工作中,我们旨在最大程度地减少对对手的隐私泄漏,并同时将模型准确性降解。更明确的是,在传输之前,将空间相关的扰动添加到用户的渐变向量中。使用相关的扰动的零和属性,可以最大程度地降低相关扰动的副作用对边缘服务器的聚合梯度的副作用。同时,将不会在对手中取消附加的扰动,从而防止隐私泄漏。提供了对扰动协方差矩阵,差异隐私和模型收敛的理论分析,根据该扰动协方差矩阵,根据该协方差的问题,以共同设计协方差矩阵和功率缩放系数,以平衡隐私保护和收敛性能之间的功率缩放系数。模拟结果验证相关的扰动方法可以提供强大的防御能力,同时确保高学习准确性。

In this paper, we consider privacy aspects of wireless federated learning (FL) with Over-the-Air (OtA) transmission of gradient updates from multiple users/agents to an edge server. By exploiting the waveform superposition property of multiple access channels, OtA FL enables the users to transmit their updates simultaneously with linear processing techniques, which improves resource efficiency. However, this setting is vulnerable to privacy leakage since an adversary node can hear directly the uncoded message. Traditional perturbation-based methods provide privacy protection while sacrificing the training accuracy due to the reduced signal-to-noise ratio. In this work, we aim at minimizing privacy leakage to the adversary and the degradation of model accuracy at the edge server at the same time. More explicitly, spatially correlated perturbations are added to the gradient vectors at the users before transmission. Using the zero-sum property of the correlated perturbations, the side effect of the added perturbation on the aggregated gradients at the edge server can be minimized. In the meanwhile, the added perturbation will not be canceled out at the adversary, which prevents privacy leakage. Theoretical analysis of the perturbation covariance matrix, differential privacy, and model convergence is provided, based on which an optimization problem is formulated to jointly design the covariance matrix and the power scaling factor to balance between privacy protection and convergence performance. Simulation results validate the correlated perturbation approach can provide strong defense ability while guaranteeing high learning accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源