论文标题
与平衡的N玩家通用游戏中的游戏理论评级
Game Theoretic Rating in N-player general-sum games with Equilibria
论文作者
论文摘要
游戏中的评分策略是游戏理论和人工智能研究的重要领域,可以应用于任何现实世界中的竞争或合作环境。传统上,只有策略之间的转移依赖性已被用于对策略进行评分(例如ELO),但是最近的工作已扩大了评级来利用游戏理论解决方案,以更好地利率在非传播游戏中的策略。这项工作概括了这些想法,并提出了适用于正式游戏中策略的N-player策略评级的新颖算法,该算法根据收益评级系统。这使得良好的解决方案概念(例如平衡)可以利用具有复杂战略互动的游戏中有效评估策略,这些策略在多种培训和许多代理之间的真实互动中出现。我们从经验上验证了现实世界正常形式数据(英超联赛)和多基础强化学习代理评估的方法。
Rating strategies in a game is an important area of research in game theory and artificial intelligence, and can be applied to any real-world competitive or cooperative setting. Traditionally, only transitive dependencies between strategies have been used to rate strategies (e.g. Elo), however recent work has expanded ratings to utilize game theoretic solutions to better rate strategies in non-transitive games. This work generalizes these ideas and proposes novel algorithms suitable for N-player, general-sum rating of strategies in normal-form games according to the payoff rating system. This enables well-established solution concepts, such as equilibria, to be leveraged to efficiently rate strategies in games with complex strategic interactions, which arise in multiagent training and real-world interactions between many agents. We empirically validate our methods on real world normal-form data (Premier League) and multiagent reinforcement learning agent evaluation.