论文标题

通过epoiriant深层体积近似的多目标优化

Multi-objective optimization via equivariant deep hypervolume approximation

论文作者

Boelrijk, Jim, Ensing, Bernd, Forré, Patrick

论文摘要

优化多个竞争目标是科学和行业中的一个常见问题。这些目标之间固有的不可分割的权衡导致探索他们的帕累托阵线的任务。出于后者目的的有意义的数量是Hypervolume指标,该指标用于贝叶斯优化(BO)和进化算法(EAS)。但是,随着目标和数据点的增加,计算高量量表的计算复杂性不利,这限制了其在那些常见的多目标优化框架中的使用。为了克服这些限制,我们建议使用深层神经网络近似高潮函数,我们称之为DeepHV。为了提高样本效率和概括,我们利用了这样一个事实,即在每个目标以及置换不变的W.R.T.目标和样品都使用了高度W.R.T.的深神经网络。组合的鳞片和排列。我们根据准确性,计算时间和概括来评估我们的方法,并近似于超量量的方法。我们还将我们的方法应用于最先进的多目标BO方法和EAS以及在一系列合成基准测试案例上进行了比较。结果表明,对于此类多目标优化任务,我们的方法很有希望。

Optimizing multiple competing objectives is a common problem across science and industry. The inherent inextricable trade-off between those objectives leads one to the task of exploring their Pareto front. A meaningful quantity for the purpose of the latter is the hypervolume indicator, which is used in Bayesian Optimization (BO) and Evolutionary Algorithms (EAs). However, the computational complexity for the calculation of the hypervolume scales unfavorably with increasing number of objectives and data points, which restricts its use in those common multi-objective optimization frameworks. To overcome these restrictions we propose to approximate the hypervolume function with a deep neural network, which we call DeepHV. For better sample efficiency and generalization, we exploit the fact that the hypervolume is scale-equivariant in each of the objectives as well as permutation invariant w.r.t. both the objectives and the samples, by using a deep neural network that is equivariant w.r.t. the combined group of scalings and permutations. We evaluate our method against exact, and approximate hypervolume methods in terms of accuracy, computation time, and generalization. We also apply and compare our methods to state-of-the-art multi-objective BO methods and EAs on a range of synthetic benchmark test cases. The results show that our methods are promising for such multi-objective optimization tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源