论文标题
具有差异隐私的微调需要额外的超参数搜索
Fine-Tuning with Differential Privacy Necessitates an Additional Hyperparameter Search
论文作者
论文摘要
模型需要接受具有隐私性学习算法的培训,以防止其培训数据中可能包含的敏感信息泄漏。但是,诸如私有随机梯度下降(DP-SGD)之类的规范算法并不能以与非私人学习相同的方式从模型量表中受益。当在复杂任务上使用DP-SGD时,这表现出了隐私与效用(准确性)之间不可吸引的权衡的形式。为了补充这种张力,正在出现范式:与公众鉴定的模型(即非敏感)培训数据的模型进行微调隐私。 在这项工作中,我们确定了对差异私人微调的现有方法的监督。他们没有通过隐私来量身定制学习细节的微调方法。我们的主要结果是展示在验证的神经网络中精心调整的层次的仔细选择使我们能够在隐私和准确性之间建立新的最新权衡。例如,对于$(\ varepsilon,δ)=(2,10^{ - 5})$在CIFAR-100上获得77.9%的精度,用于在Imagenet上鉴定的模型。我们的工作要求进行其他超参数搜索,以配置差异私有的微调过程本身。
Models need to be trained with privacy-preserving learning algorithms to prevent leakage of possibly sensitive information contained in their training data. However, canonical algorithms like differentially private stochastic gradient descent (DP-SGD) do not benefit from model scale in the same way as non-private learning. This manifests itself in the form of unappealing tradeoffs between privacy and utility (accuracy) when using DP-SGD on complex tasks. To remediate this tension, a paradigm is emerging: fine-tuning with differential privacy from a model pretrained on public (i.e., non-sensitive) training data. In this work, we identify an oversight of existing approaches for differentially private fine tuning. They do not tailor the fine-tuning approach to the specifics of learning with privacy. Our main result is to show how carefully selecting the layers being fine-tuned in the pretrained neural network allows us to establish new state-of-the-art tradeoffs between privacy and accuracy. For instance, we achieve 77.9% accuracy for $(\varepsilon, δ)=(2, 10^{-5})$ on CIFAR-100 for a model pretrained on ImageNet. Our work calls for additional hyperparameter search to configure the differentially private fine-tuning procedure itself.