论文标题

一种用于在密集的随机交叉图中找到最大簇的光谱算法

A spectral algorithm for finding maximum cliques in dense random intersection graphs

论文作者

Christodoulou, Filippos, Nikoletseas, Sotiris, Raptopoulos, Christoforos, Spirakis, Paul

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In a random intersection graph $G_{n,m,p}$, each of $n$ vertices selects a random subset of a set of $m$ labels by including each label independently with probability $p$ and edges are drawn between vertices that have at least one label in common. Among other applications, such graphs have been used to model social networks, in which individuals correspond to vertices and various features (e.g. ideas, interests) correspond to labels; individuals sharing at least one common feature are connected and this is abstracted by edges in random intersection graphs. In this paper, we consider the problem of finding maximum cliques when the input graph is $G_{n,m,p}$. Current algorithms for this problem are successful with high probability only for relatively sparse instances, leaving the dense case mostly unexplored. We present a spectral algorithm for finding large cliques that processes vertices according to respective values in the second largest eigenvector of the adjacency matrix of induced subgraphs of the input graph corresponding to common neighbors of small cliques. Leveraging on the Single Label Clique Theorem from [15], we were able to construct random instances, without the need to externally plant a large clique in the input graph. In particular, we used label choices to determine the maximum clique and then concealed label information by just giving the adjacency matrix of $G_{n, m, p}$ as input to the algorithm. Our experimental evaluation showed that our spectral algorithm clearly outperforms existing polynomial time algorithms, both with respect to the failure probability and the approximation guarantee metrics, especially in the dense regime, thus suggesting that spectral properties of random intersection graphs may be also used to construct efficient algorithms for other NP-hard graph theoretical problems as well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源