论文标题

部分可观测时空混沌系统的无模型预测

Advanced Deep Learning Architectures for Accurate Detection of Subsurface Tile Drainage Pipes from Remote Sensing Images

论文作者

Breitkopf, Tom-Lukas, Hackel, Leonard W., Ravanbakhsh, Mahdyar, Cooke, Anne-Karin, Willkommen, Sandra, Broda, Stefan, Demir, Begüm

论文摘要

地下瓷砖排水管提供农艺,经济和环境效益。通过降低湿土的地下水位,它们可以改善植物根的曝气,并最终提高农田的生产率。但是,它们也确实提供了农业化学物质进入地下水体的入口,并增加了土壤中的营养损失。为了维护和基础设施的发展,需要精确的瓷砖排水管位置和排水的农业地图。但是,这些地图通常已经过时或不存在。多年来,已经采用了不同程度的成功来克服这些限制,多年来应用了不同的遥感(RS)图像处理技术。通过机器学习分割模型,深度学习技术(DL)技术的最新发展改进了传统技术。在这项研究中,我们介绍了两个基于DL的模型:i)改进的U-NET体系结构; ii)在瓷砖排水管检测框架中,基于视觉变压器的编码器解码器。与基本的U-NET体系结构相比,实验结果证实了这两种模型在检测准确性方面的有效性。我们的代码和模型可在https://git.tu-berlin.de/rsim/drainage-pipes-detection上公开获取。

Subsurface tile drainage pipes provide agronomic, economic and environmental benefits. By lowering the water table of wet soils, they improve the aeration of plant roots and ultimately increase the productivity of farmland. They do however also provide an entryway of agrochemicals into subsurface water bodies and increase nutrition loss in soils. For maintenance and infrastructural development, accurate maps of tile drainage pipe locations and drained agricultural land are needed. However, these maps are often outdated or not present. Different remote sensing (RS) image processing techniques have been applied over the years with varying degrees of success to overcome these restrictions. Recent developments in deep learning (DL) techniques improve upon the conventional techniques with machine learning segmentation models. In this study, we introduce two DL-based models: i) improved U-Net architecture; and ii) Visual Transformer-based encoder-decoder in the framework of tile drainage pipe detection. Experimental results confirm the effectiveness of both models in terms of detection accuracy when compared to a basic U-Net architecture. Our code and models are publicly available at https://git.tu-berlin.de/rsim/drainage-pipes-detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源