论文标题
原月球磁盘中凝血不稳定性的非线性结果II:通过反应和碎片介导的尘环形成
Nonlinear Outcome of Coagulation Instability in Protoplanetary Disks II: Dust Ring Formation Mediated by Backreaction and Fragmentation
论文作者
论文摘要
在我们以前的工作(论文I)中,我们证明了凝血不稳定性导致由于径向漂移而导致耗尽的粉尘浓度,并在局部加速了灰尘的生长。在这项工作(论文II)中,我们对凝结不稳定的数值模拟考虑了对气体和灰尘晶粒的碰撞碎片的影响。我们发现,由于反应而导致的粉尘漂移的放缓调节凝血不稳定性非线性生长阶段的灰尘浓度。尘埃与气体表面密度比从$ 10^{ - 3} $增加到$ \ sim10^{ - 2} $。在我们的磁盘模型中,每个产生的灰尘环倾向于质量为$ \ simeq0.5m _ {\ oplus} -1.5m _ {\ oplus} $。与纸I相反,尘埃表面密度的轮廓显示了每个灰尘环处的局部平稳结构。尽管在非线性生长时进行了调节,但有效的尘埃浓度仍降低了其碰撞速度。结果,粉尘晶粒可以超越碎裂屏障,而无尺寸的停止时间达到了统一性,就像在纸上I一样,有效的灰尘生长的必要条件是(1)$α<1 <1 \ 1 \ 1 \ times10^{ - 3} $和(2)灰尘碎片的巨大关键速度($> 1 $ m/s)。外部区域的有效尘埃浓度将减少向内的卵石通量,并有望通过卵石积聚减速行星。我们还发现,产生的环对世俗重力不稳定(GI)可能不稳定。随后的世俗GI促进了行星的形成。因此,我们期望这些不稳定性的结合是尘埃环和行星形成的有前途的机制。
In our previous work (Paper I), we demonstrated that coagulation instability results in dust concentration against depletion due to the radial drift and accelerates dust growth locally. In this work (Paper II), we perform numerical simulations of coagulation instability taking into account effects of backreaction to gas and collisional fragmentation of dust grains. We find that the slowdown of the dust drift due to backreaction regulates dust concentration in the nonlinear growth phase of coagulation instability. The dust-to-gas surface density ratio increases from $10^{-3}$ up to $\sim10^{-2}$. Each resulting dust ring tends to have mass of $\simeq0.5M_{\oplus}-1.5M_{\oplus}$ in our disk model. In contrast to Paper I, the dust surface density profile shows a local plateau structure at each dust ring. In spite of the regulation at the nonlinear growth, the efficient dust concentration reduces their collision velocity. As a result, dust grains can grow beyond the fragmentation barrier, and the dimensionless stopping time reaches unity as in Paper I. The necessary condition for the efficient dust growth is (1) weak turbulence of $α<1\times10^{-3}$ and (2) a large critical velocity for dust fragmentation ($> 1$ m/s). The efficient dust concentration in outer regions will reduce the inward pebble flux and is expected to decelerate the planet formation via the pebble accretion. We also find that the resulting rings can be unstable to secular gravitational instability (GI). The subsequent secular GI promotes planetesimal formation. We thus expect that a combination of these instabilities is a promising mechanism for dust-ring and planetesimal formation.